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ABSTRACT 
 
 
 

This thesis develops active queue management mechanisms for real-time traffic 

for MANETs. Providing QoS for real-time applications is still an open issue as stated in 

RFC 2309. The proposed packet-dropping algorithm called Selective Early Discard 

(SED) selectively drops packets in order to spread the packet losses in a queue. Two 

variations of SED are also examined: one adds priority in order to provide service 

differentiation and the other utilizes timestamps to enable the intermediate nodes to drop 

packets that are likely to be unusable by the receiver due to excessive delay. Another 

scheme that drops bits instead of packets is also investigated. 

Using simulation, the new queuing schemes are evaluated in a MANET 

environment, and their performance is compared with other existing QoS schemes, such 

as Random Early Discard (RED) and First In First Out (FIFO). Results indicate that SED 

minimizes the burst errors due to buffer overflow, thereby improving the performance for 

real-time traffic. SED is also capable of providing service differentiation; additional 

performance improvement can be realized by utilizing timestamps. Bit-dropping 

techniques can provide further performance improvements by spreading the error at the 

bit level (versus spreading the error at the packet level as in SED).  
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EXECUTIVE SUMMARY 

 
 

Today’s demands on military operations call for extensive use of digital 

communication devices to support real-time traffic in the battlefield. The Joint Tactical 

Radio System (JTRS) acquisition program was intended for all the services to combine 

and integrate all tactical radio developments into one platform. These communication 

devices will operate in a Mobile Ad hoc Network (MANET) environment and are 

capable of transmitting voice, video and data.  

MANETs present many challenges, especially when real-time traffic must be 

supported in terms of providing Quality of Service (QoS) guarantees. Providing QoS for 

real-time traffic over IP-based networks is still an open issue because existing active 

queue management schemes have been designed for TCP-compatible traffic. MANETs 

present the worst-case scenario for QoS guarantees due to their distinct characteristics, 

such as contention from multiple users (when using 802.11) and limited bandwidth. The 

objective of this thesis is to develop new active queue management schemes for 

MANETs that are more efficient compared with existing algorithms. These schemes are 

based on packet and bit dropping techniques.  

A packet-dropping algorithm, called Selective Early Discard (SED) that 

selectively drops packets in order to reduce the burst error, is developed in this thesis. 

Two variations of SED are also examined: one adds traffic priority in order to provide 

service differentiation and the other utilizes timestamps to enable the intermediate nodes 

to drop packets that are likely to be unusable by the receiver due to excessive delay. 

Another scheme that drops bits instead of packets is also investigated. 

Using simulations, the new queuing schemes are evaluated in a MANET 

environment, and their performance is compared with other existing QoS schemes, such 

as Random Early Discard (RED) and First In First Out (FIFO). The performance metrics 

used for evaluation of the QoS schemes are packet loss, average end-to-end delay and 

distribution of packet losses.  

 xix



The simulation results indicate that SED minimizes the burst errors due to buffer 

overflow, thereby improving the performance for real-time traffic. SED is also capable of 

providing service differentiation by utilizing the services of DiffServ in which packets are 

marked as high and low priority. Using timestamps, additional performance 

improvements of the proposed QoS schemes are realized as unusable packets at the 

destination due to excessive delay are dropped in intermediate nodes. Bit-dropping 

techniques can provide further performance improvements by spreading the error at the 

bit level (rather than spreading the error at the packet level as in SED).  
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I. INTRODUCTION 

A. MOTIVATION 

Today’s demands on military operations call for extensive use of digital 

communication devices to support real-time traffic in the battlefield. As a result, the 

military is very interested in the development of such devices as the Software Defined 

Radios (SDR) for the next generation tactical communications. The military term for 

these radios is Joint Tactical Radio Systems (JTRS).  

The JTRS program was intended for all the services to combine and integrate all 

tactical radio developments into one platform. The goal of the JTRS project is to develop 

a family of affordable, interoperable high-capacity, tactical software defined radios, 

providing both line-of-sight and beyond-line-of-sight Command, Control, 

Communications, Computers and Intelligence (C4I) capabilities to the war fighters [1]. 

This family of radios will cover an operating spectrum from 2 to 2,000 MHz and is 

capable of transmitting voice, video and data. 

 Many wireless networking problems have to be solved for the efficient design 

and deployment of these communications devices that operate in a Mobile Ad-hoc 

Network (MANET) environment. Among these problems, the provision of Quality of 

Service (QoS) is one of the most important for two reasons: (1) providing QoS for real-

time traffic over IP-based networks is still an open issue, and (2) MANETs due to their 

distinct characteristics present the worst case scenario for QoS guarantees. 

Providing QoS for streaming applications is still an open issue as stated in RFC 

2309 [28]. The existing QoS schemes have been designed for Transport Control Protocol 

(TCP)-compatible applications and, as a result, they do not take into account the specific 

characteristics of the real-time traffic, such as voice and video. The Random Early 

Discard (RED) algorithm [29] is the recommended Internet Engineering Task Force 

(IETF) queue management scheme for congestion avoidance in TCP-compatible 

connections. It is widely used as evidenced by its implementation in the latest versions of 

Cisco routers [24]. Although RED is the best existing solution, it does not achieve the 

goal of providing the required QoS guarantees in future networks in which the majority 

1 



of the traffic consists of flows that are unresponsive to congestion notification or 

responsive but more aggressive than TCP [28]. 

MANETs present many challenges: they are bandwidth limited; there is 

contention from multiple users; and the nodes send, receive and relay packets. Moreover, 

they are focused on real-time traffic delivery, thus there is a need for providing better 

treatment for some sources. 

Based on the above considerations the motivation behind this thesis is to 

investigate new active queue management QoS schemes for MANETs that take into 

account the specific characteristics of real-time traffic. 

 

B. OBJECTIVES 

The objectives of this thesis are to conduct an in-depth study in providing QoS 

guarantees for real-time traffic in MANETs and to propose new active queue 

management schemes that are more efficient compared with existing algorithms. This 

work is limited to real-time traffic, such as voice and video, and assumes that the non-

real-time traffic, such as e-mail and ftp, is handled separately. More specifically, the 

research goals can be summarized as follows: 

• Develop new active queue management algorithms that selectively drop packets 

or bits to spread the packet losses in a queue, thereby improving the performance 

of real-time traffic in MANETs. 

• Extend the proposed algorithms by adding priority and timestamps in order to 

achieve service differentiation between high and low priority traffic sessions. 

• Conduct simulation runs to compare the performance of the proposed algorithms 

with that of Random Early Discard (RED) and First In First Out (FIFO) queuing 

schemes.  

 

2 



C. ORGANIZATION OF REPORT 

The thesis is organized as follows. Chapter II discusses the main issues in 

MANETs by emphasizing the aspects that play an important role in providing QoS in 

these networks. Chapter III gives a detailed analysis of the real-time traffic characteristics 

and a review of the existing QoS protocols and schemes. Chapter IV describes the 

packet-dropping algorithms: the Selective Early Discard (SED) and the extension of SED 

using IN/OUT packets (SED/IO). In addition, a variation of these algorithms using 

timestamps is presented. Chapter V presents a bit-dropping scheme and a demonstration 

of its effectiveness using the Federal Standard 1016 Code- Excited Linear Prediction 

(CELP) codec. Chapter VI describes the Network Simulation 2 (NS2) package and 

presents simulation results for the proposed algorithms along with RED and FIFO 

queuing schemes. Chapter VII summarizes the results and provides conclusions and 

recommended future work. Appendix A contains a segment of the SED and SED/IO code 

files used in the simulations. 
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II. MOBILE AD HOC NETWORKS (MANET) 

A. OVERVIEW 

Wireless networking appeared in the 1970s when these networks were called 

packet radio networks [2]. Since then, mobile wireless networks have developed into two 

main technologies: mobile IP networks and Mobile Ad-Hoc Networks (MANETs). 

Figure 1 shows the conceptual differences between the existing wireless networks 

today. First, the mobile IP networks or cellular networks consist of fixed, wired gateways 

known as base stations. A mobile host within these networks communicates with the 

nearest base station. One of the major problems related to cellular networks is called 

“handoff, ” which is the process of transferring a mobile station from one channel or base 

station to another without noticeable delay or packet loss. Another problem is the mobile 

nodes are able to connect to the network only if the base station is within its 

communication range, thus nodes are limited to places where such a cellular 

infrastructure exists. In contrast, MANETs do not rely on pre-existing infrastructure, such 

as base stations. They are self-organizing wireless networks consisting of a number of 

mobile nodes. Each mobile node in a MANET can send, receive or forward a packet [3],  

[4]. 

Laptop computer

Laptop computer

Laptop computer

 

Figure 1. Existing Mobile Communication Networks:  (a) Mobile IP (cellular) and 
(b) Mobile Ad-hoc Networks. 
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MANETs have four distinct characteristics [3]: dynamic topologies, bandwidth 

constraints, energy-constraints and limited physical security. The first characteristic 

allows the nodes to move arbitrarily and unpredictably causing possible failures in links 

or routes. The second concerns the wireless links typically having a significantly lower 

capacity than their wired counterparts. Moreover due to contention from multiple users, 

fading, noise and interference, the capacity is highly time variable. Third, the nodes are 

usually battery-operated; therefore, management of the power is needed. Finally, wireless 

links are in general vulnerable to security threats like eavesdropping, spoofing, and 

denial-of-service attacks. Together these characteristics pose a challenge in providing 

quality of service.  

Currently, one of the areas of interest in mobile ad hoc networks is the provision 

of QoS guarantees. The first aspect of QoS is related to routing for which much research 

has been done and many different routing protocols have been proposed in the current 

literature. Secondly, QoS is affected by the Medium Access Control protocol (MAC). 

Although the most commonly used MAC protocol in MANETs is the 802.11, it appears 

to be unsuitable, especially under high traffic loads. In this thesis QoS algorithms are 

developed for real-time traffic over IP-based networks. The algorithms are then applied 

to a MANET environment as a means to evaluate the proposed algorithms as these 

networks present the worst-case scenario for providing QoS guarantees. 

The MANET routing protocols must guarantee compatibility and interoperability 

with Internet standards in the other layers [3]. A MANET node may act as a source if the 

traffic is being originated within the node or as a relay if it is an intermediate node. The 

proposed protocol stack from the IETF MANET working group for a mobile node is 

depicted in Figure 2. Each packet is sent to the wired or wireless MAC protocol in order 

to be forwarded via the wired or wireless network interface, respectively, to the next hop.  
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Figure 2. Mobile Node Protocol Stack (From ref. [14]). 

 

B. COMMUNICATION LINK DESIGN ISSUES 

A wireless communication system must be able to provide reliable transmission 

of data using the lowest possible bandwidth and power. Wireless channels in which 

MANETs operate make the design of a wireless communication system a difficult task 

due to their distinct characteristics. Specifically, wireless channels are known for high 

error rates and limited bandwidth. In general, systems are designed for the worst-case 

propagation conditions; however, because of the unpredictability of radio channels, a 

system can also be designed to adapt to the link quality at both the link layer and the 

network layer level.  

 

1. Wireless Channel Characteristics 

The mobile radio channel is a difficult environment and can vary from simple 

Line-Of-Sight (LOS) to one that has obstructions like buildings, trees or mountains. The 

Friis formula for free space propagation gives the received signal strength when the 

transmitter and receiver have a clear line of sight path between them: 

2

2 2( )
(4 )

t tPG G
P d

d L
λ λ

π
=     (3.1) 

where Pt is the transmitter power, d is the distance between the nodes, Gt and Gr are the 

transmitter and receiver antenna gains, respectively, L is the system loss factor not related 

to propagation (L ≥ 1), and λ is the wavelength. 
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The actual transmission loss in LOS radio waves is different than the free space 

loss due to reflection, refraction and/or diffraction. A two-ray reflection model, which 

considers both the direct path and a ground reflection path, provides a better 

approximation model than the free-space model at large distances [3]. Several other 

propagation models are available in the literature that predict the large scale effects by 

taking into account such factors as diffraction and refraction. Also, there are outdoor 

propagation models that consider the terrain profile and estimate the path loss over 

irregular terrains. All these models are appropiate for the prediction of signal strength at a 

particular receiving point or in a specific area while varying widely in their approach, 

complexity and accuracy [3]. In this thesis, a two-ray propagation model using the 

crossover distance parameter is used. 

 

2.  Medium Access Control (MAC) [8] 

 In wireless networks, users share a common medium, thereby creating a need for 

a protocol that provides efficient and fair access. The most commonly used MAC 

protocols in wireless networks are Frequency Division Multiple Access (FDMA), Time 

Division Multiple Access (TDMA) and Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA). The CSMA/CA scheme, adopted in the IEEE 802.11 standard, 

is the most widely MAC protocol in wireless LANs and MANETs. In this thesis, 802.11 

is used in network simulation. 

In CSMA/CA, when a node wishes to transmit a packet, it first listens to the 

medium. If the channel is idle, it transmits the packet; otherwise, it waits for a random 

amount of time based on a “backoff factor.” When the medium is idle, the transmitting 

node gradually decreases its backoff counter; however, if the medium is busy the counter 

is frozen. The packet is transmitted when the counter reaches zero. The Ready-to-Send 

(RTS) and Clear-to-Send (CTS) messages are used to reduce the collision problem, 

which occurs if two nodes try to access the medium simultaneously. When the backoff 

counter reaches zero, the transmitting node sends a RTS packet containing information 

about the length of the message that is ready for transmission. Then, if the receiving node 
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hears the RTS, it will send a CTS packet, allowing the transmitter to send its packet.  

Finally, upon successful reception of the packet, the receiving node sends an ACK. 

 

3. Performance Degradation in Ad Hoc Networks [5], [6], [7] 

In Ad hoc networks, due to the interactions with the MAC layer, the performance 

in terms of throughput and end-to-end delay often degrades significantly, which can be 

attributed to hidden node, exposed node and control packet overhead. These problems 

cause throughput instability, unfairness, and dependence on the number of nodes, size of 

the area, and the length of the packets. These in turn affect the quality of service at the 

application layer level.  

The hidden node and exposed node problems are not completely isolated in the 

IEEE 802.11 standard. In spite of using RTS, CTS, and random back off mechanism, 

collisions still happen. The result is degradation in throughput is referred to as throughput 

instability and unfairness [5].  

Figure 3 illustrates the hidden node problem. Suppose that station A is 

transmitting to station B, and C is ready to transmit to B or another station. Station C is 

out of the range of A, hence C does not detect the carrier from A. As a result, station C 

transmits its message and a collision occurs. Station A is hidden from C. 

A B C

Currently
transmitting to B

Wants to
transmit to B

communication range

Will collide with transmition
from A to B

carrier sensing range

 

Figure 3. Hidden node problem. 
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The exposed node problem exists in the CSMA/CD protocols because the carrier 

sensing range is larger than the communication range between two nodes. In the IEEE 

802.11 standard, the required signal-to-noise ratio (threshold) for carrier sensing is lower 

than the corresponding range for error free reception, which is the communication range. 

Figure 4 depicts the exposed node problem. Station B transmits to A. Station C is within 

the transmission range of B and wants to transmit to D. Although the medium is free near 

Station C, it cannot send to D because C detects B’s carrier. 

A B

Currently
transmitting

Wants to
transmit to D

C D

communication range
of node B

Cannot send to D
due to carrier sense

carrier sensing range
of node B

 

Figure 4. Exposed node problem. 
 
 

Throughput degradation is also experienced in ad hoc networks by either 

increasing the number of nodes within a specific area or decreasing the packet size [6]. 

The degradation in throughput as the packet size becomes smaller is due to increased 

overhead. Each RTS packet is 40 bytes long while CTS and ACK packets are 39 bytes 

and the MAC header is 47 bytes long. As the number of nodes within a given area is 

increased, the throughput decreases because the hidden and exposed node problems 

become more pronounced.  

This section summarized the problems related to the 802.11 MAC protocol when 

used in ad hoc networks. Both TCP and UDP connections are affected by these problems. 
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Additionally, considering that UDP is unresponsive to congestion notification, its 

performance is expected to be worse than that of TCP.  

 

C. NETWORK LAYER ISSUES 

Routing, a function associated with Layer 3 (OSI model), is a technique used by 

the network to determine a path for packets from a source to a destination. In each node, 

a router examines the packet’s destination address, estimates the best path and forwards 

the packet along this route. The routing information is related to the topology and 

conditions of the network. In a MANET in which the topology changes frequently, the 

routing information needs to be updated more frequently than in the fixed networks. 

 

1. Conventional Routing Protocols [12] 

There are two types of widely used routing protocols in packet switched 

networks: link state and distance vector routing algorithms. In link-state routing, each 

router maintains a database that describes the topology of the entire network with a cost 

for each link. Whenever the network topology is changed, a message known as Link State 

Advertisement (LSA) floods throughout the network. The nodes take the information and 

update their database by using the shortest path algorithm, usually Dijkstra’s, to estimate 

the next hop for each destination.  

In distance vector routing, each node informs its neighbors of its routing table by 

periodically broadcasting an estimate of the shortest distance to every other node in the 

network. Each router, as it receives an update for each destination in each table, compares 

the metric in its table with that in the neighbor’s table plus the cost of reaching that 

neighbor. These protocols are based on the distributed Belman-Ford routing algorithm. 

Link state protocols compared to distance vector are more stable, have faster 

convergence and discover more easily a network topology. On the other hand, distance 

vector protocols are easier to implement and require less memory. Finally, the associated 

overhead in distance vector protocols is constant regardless of the amount of topology 

changes in the network. 
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2. Overview of Ad hoc Routing Protocols [12], [13] 

Due to the distinct characteristics of MANETs, the design of an efficient routing 

protocol is a challenging task. The main reason is the traditional routing protocols 

described above are designed for a relatively stable network topology. In addition, the 

conventional protocols rely on some form of distributed routing databases. In MANETs, 

routers cannot be assumed to have persistent data storage, and they cannot always be 

trusted [2]. 

The most common categorization of ad hoc routing protocols is presented in 

Figure 5. The basic difference between the on-demand and table-driven categories is 

related to the way the routing information is collected. On-demand routing protocols 

collect routing information only when needed by using the route discovery procedure. On 

the other hand, table-driven protocols constantly propagate routing information. 

Table-driven routing protocols, such as Dynamic Destination Distance Vector 

(DSDV) [9, 11] and Wireless Routing Protocol (WRP), continuously evaluate routes 

(proactive). In contrast, on-demand or source-initiated protocols create routes only when 

needed (reactive). Protocols that belong to this category are Dynamic Source Routing 

(DSR), Temporary Ordered Routing Algorithm (TORA) and Associative Based Routing 

(ABR). Finally, hybrid routing protocols, such as Ad hoc On-demand Distance Vector 

(AODV) [11, 14] and Zone Routing Protocol (ZRP) [10, 15], have both proactive and 

reactive characteristics.  

The DSDV is the only suitable proactive protocol when a reasonable time is 

allowed in order to converge. DSR and AODV provide the best performance in most 

scenarios according to simulation studies [12]. Notably, DSR outperforms AODV in 

lower traffic density and mobility and when the number and size of the network is low 

(e.g., less than 20 nodes). The main drawback of DSR that leads to performance 

degradation in large or multihop networks is the need to include the entire route in each 

packet. ZRP divides the network into zones/clusters and provides a good solution for 

large networks using a reactive approach for routing between the zones and proactive 

approach within a zone. 
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Clearly none of the proposed ad hoc routing protocols provide the best 

performance in all scenarios. Certain protocols are well suited for specific situations. In 

this thesis, the DSR protocol is used in the simulation model because the network size is 

small, less than 20 nodes, and the mobility is usually low [11]. DSR is described in the 

following subsection. 

Ad hoc routing protocols

Table-driven On-demand Hybrid

DSDV WRP DSR TORA ABR AODV ZRP

 

Figure 5. Classification of ad hoc routing protocols. 

 

3. Dynamic Source Routing (DSR)  [12], [13] 

DSR is a reactive protocol, and its operation is based on source routing. In source 

routing, each packet carries a list of the nodes leading to the destination in its header. 

Each node updates its route cache whenever a new route is learned. If a source node has a 

packet to send and no route is available to the destination in its cache, it floods the 

network with a route request (RREQ) packet, which contains the address of both the 

sender and the destination. The nodes that receive the RREQ, if they do not know a route 

to the destination, forward the RREQ packet after adding their own address to the list. In 

order to reduce the control packets in the network, a DSR node does not forward a RREQ 

packet when it finds its own address in the list. Finally, a reply packet is sent back to the 
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source by either an intermediate node, which knows a route to the destination or the 

destination. Figures 6 (a) and (b) illustrate this route discovery process.  
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Figure 6. Creation of Route Cache in DSR (After Ref. [15]). 
 

Once the route is discovered, route maintenance is accomplished through the use 

of route error packets and acknowledgements. An error packet message is sent back to 

the source when a route is broken and the nodes update its route cache; otherwise, an 

acknowledgement verifies that the next node received the packet.  
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D. SUMMARY 

This chapter introduced mobile ad hoc networking concepts in order to provide 

the necessary background. It discussed issues in MANETs, such as routing and medium 

access control. The next chapter provides a detailed discussion of the QoS for real-time 

traffic and a review of the existing active queue-management QoS schemes. 
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III. QUALITY OF SERVICE (QOS) ISSUES 

Mobile ad hoc networks, as mentioned in the previous chapter, are generally the 

worst-case scenarios for providing QoS guarantees. Not only is the performance of these 

networks unpredictable due to network dynamics, but they also operate with a limited-

bandwidth, in a high- error-rate environment. Additionally, if a MANET supports real-

time traffic, there is a need for effective traffic management by implementing an efficient 

QoS scheme. This chapter discusses the characteristics of real-time traffic with emphasis 

placed on voice traffic. Also, the chapter reviews the existing approaches for providing 

QoS guarantees. Based on this discussion, the next two chapters will develop some new 

QoS schemes.  

 

A. REAL-TIME TRAFFIC CHARACTERISTICS 

Real-time traffic consists of multimedia applications like audio and video 

conferencing, video-on-demand, distributed interactive applications and network games; 

applications, such as FTP and e-mail, are considered as non-real time-traffic.  

 

1. Requirements for Real-Time Applications 

Real-time traffic applications can be divided into three categories according to 

their traffic profile [17]: continuous data sources in which fixed-size packets are 

generated at constant intervals; on-off sources in which fixed size packets are generated 

at fixed intervals with the source alternating between active and inactive periods; and 

finally, variable packet size in which the source produces variable-length packets at 

uniform intervals. Real-time simulations, audio conferencing and digitized video with 

different compression ratios are three examples of the different traffic profiles, 

respectively. 

The bandwidth requirements are different for different applications. For a 

continuous data source, the required bandwidth is usually large (1-10 Mbps) and can be 

made available when needed. In general, multimedia data are compressed and encoded in 
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order to reduce the redundancy of data. This results in variable bit rate (VBR) data, hence 

the bandwidth demand of an application varies over time. In VBR, there is a large 

difference between the peak and minimum data rate. Due to bandwidth limitations of 

wireless networks, bandwidth reservation at peak-rates leads to poor utilization. 

Real-time applications are delay sensitive in both end-to-end delay and delay 

variation (jitter). End-to-end delay is the total delay experienced by a packet and consists 

of the compression (decompression), packetization (depacketization), propagation and 

queuing delays. The only random component in the end-to-end delay is the queuing 

delay, which results in the non-uniform arrival of packets at the destination (jitter). The 

bounds on delay are dictated by the application. Packets that exceed the delay bounds are 

not usable at the receiver.  

Usually, real-time applications can tolerate packet losses. The packet loss 

tolerance is dependant on the application and compression /packetizing schemes used. 

Additional discussion on voice traffic is presented in the following subsection as it is 

used in this thesis in the simulation studies. 

 

2. Real-Time Voice Characteristics 

Voice quality, the most important characteristic when voice is transmitted over 

the network, is characterized in terms of qualitative and quantitative measures. 

Qualitative measures are mainly voice fidelity and intelligibility while quantitative 

measures reflect the performance of the underlying transport mechanisms. The two most 

important performance metrics that affect voice quality are packet loss and end-to-end 

delay. 

According to International Telecommunication Unit (ITU) recommendation 

G.114 [41], the one-way end-to-end delay for toll quality speech must be less than 150 

ms. End-to-end delays of 150 to 300 ms cause degradation of voice quality but are still 

acceptable in international calls and satellite transmission. For delays of more than 300 

ms, significant voice quality degradation occurs. Additionally, because voice is an 

isochronous application, the jitter should be small so that the play back at the receiver 

remains smooth. Jitter buffers are usually effective for a maximum jitter of 100 ms.   
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Voice traffic can tolerate a small amount of error due to packet loss, leading to 

slight degradation in quality. The amount of tolerable loss is different for various 

compression schemes and depends on application requirements. Generally speaking, the 

greater the bandwidth reduction due to compression, the more sensitive the coded voice 

packets are to packet losses. The ITU G.729 codec for toll quality constrains error due to 

packet loss to 1% in order to avoid audible errors. Experimental results reported by 

Nortel [33], Cisco [34] and other companies on voice over IP (VoIP) applications suggest 

that a much higher packet loss rate of 4% is acceptable without significant degradation in 

voice quality. The acceptable amount of packet losses is discussed in detail in the packet 

dropping study in Chapter IV. 

 

3. Transport Protocol 

Two transport protocols are available for the transmission of real-time traffic: 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). Real-time 

Transport Protocol (RTP) is an application layer protocol that supports real-time traffic 

when UDP is used.  

TCP provides a reliable connection between the hosts and guarantees that packets 

are delivered in the same order in which they were sent. Reliable data transfer is achieved 

using acknowledgements and packet retransmissions. The source and the destination IP 

addresses and port numbers explicitly identify a TCP connection. TCP protects the data 

using a checksum and provides flow and congestion control. The TCP header is at least 

20 bytes long.  The optional field in the header is used for extensions to TCP as described 

in RFC 2018 [20] and RFC 768 [21]. 

User Datagram Protocol (UDP) provides connectionless unreliable service with 

low overhead. The UDP header length is 8 bytes and consists of four fields, each being 

two bytes in length. These fields are source and destination port numbers, length of the 

entire UDP segment, and an optional checksum. 

TCP is rarely used in real-time traffic applications. It provides reliable 

transformation of data; however, this is not necessary for some real-time traffic 

applications because they are loss tolerant. TCP is a point-to-point protocol that sets up a 
19 



connection between two end-points. Consequently, in multicast distribution for N 

participants, there is a need for N×N connections, thus increasing complexity as well as 

packet traffic. TCP retransmits the packets when losses occur, and a majority of the 

retransmitted packets may not be usable because of the additional delay. Window backoff 

occurs when TCP sources lower their rates in response to packet losses. However, real-

time traffic is delay sensitive and, therefore, the sources cannot reduce the transmission 

rate because it often results in unacceptable packet delay at the destination.  

UDP is a better choice than TCP for real-time traffic because it provides relatively 

lower complexity, multicast capabilities, lower overhead and no packet retransmissions. 

However, there are also limitations in using UDP. UDP does not provide packet delivery 

in order to identify duplicate packets and detect losses. RTP over UDP provides a 

solution to these. 

RTP [22] is designed to handle end-to-end network transport functions for real-

time applications by using sequence numbers and timestamps. The sequence numbers 

help solve the problems of packet loss, duplication and out-of-order delivery. The lost 

packets are detected and replaced by dummy packets while the out-of-order packets, if 

not too late, are reordered in a buffer. The timestamp is used for packet synchronization 

at the destination using a delay buffer. The Real-Time Transport Control Protocol 

(RTCP) is a companion protocol to RTP. Each connection participant periodically issues 

an RTCP packet to provide information about the quality of reception. 

An important issue for the implementation of IP/UDP/RTP is the associated 

overhead, a total of 40 bytes (20+8+12). The problem becomes larger in the case of voice 

traffic due to small payload sizes, usually 20-30 bytes. However, the compression of IP, 

UDP and RTP headers on a link-by-link basis reduces the total overhead to two bytes 

when no UDP checksums are sent or four bytes when the checksums are sent [23]. The 

header compression helps RTP run more efficiently, especially over low speed links 

where both the associated overhead and transmission delay are reduced significantly. On 

the other hand, the compression of the packet header adds significant complexity in the 

case of multihop networks because each intermediate node has to decompress and then 

compress a packet before its transmission to the next node. 
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B. QOS OVERVIEW 

Quality of Service (QoS) is defined as the collective effect of network 

performances that determines the degree of user satisfaction in the service [39]. The three 

fundamental pieces for QoS implementation are: QoS within a single network element 

(for example, queuing, scheduling, and traffic shaping), QoS techniques for coordinating 

QoS from end-to-end among network elements, and QoS policy, management, and 

accounting functions for controlling and administering end-to-end traffic across a 

network [24]. An autonomous network like a MANET is able to implement one or a 

combination of these QoS architectures. 

When using techniques that provide a level of assurance for the network traffic, 

two QoS types exist: resource reservation and traffic prioritization. Resource reservation 

means that network resources are allocated according to an application’s QoS request and 

are subjected to bandwidth policy. In traffic prioritization, the traffic is classified, and the 

network elements give preferential treatment to applications having a greater demand for 

the network resources [25].  

 

1. QoS Protocols 

Two widely used protocols for providing QoS are the Resource reSerVation 

Protocol (RSVP) and Differentiated Services (DiffServ). 

RSVP [26] provides QoS by reserving resources, such as bandwidth, during the 

signaling process. An overview of how the protocol works is illustrated in Figure 7. The 

source sends a PATH message to the receiver(s) containing the traffic specification 

information, such as upper and lower bounds of bandwidth, delay and jitter. The receivers 

send a RESV message that consists of the traffic specification and a request specification 

containing the packets for which the reservation is being made along with the type of 

service. When each intermediate router receives the RESV message, it sends a request to 

the next router. If the request can be satisfied, the router sends the PATH upstream to the 

next router; otherwise, it returns an error back to the receiver. If the last intermediate 
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router accepts the request, it sends a confirmation message back to the receiver and the 

path is established. 

 

Sends PATH periodically
describes application

Source

Responds
to request

Router Router

PATH PATH PATH

RSVP RSVP RSVPRSVP
soft-state

RSVP
soft-state

Destination

Data flow with end-to-end QoS guarantees

 

Figure 7. Resource reservation using the RSVP Protocol (After Ref. [26]). 

 

RSVP allocates resources to individual flows, which can lead to scalability 

limitations since signaling information between the routers increases proportional to the 

number of flows. Two reasons make this solution unsuitable for MANETs. First, 

MANETs are bandwidth limited, and the associated overhead from control (signaling) 

packets may cause congestion in the network. Second, topology changes often cause 

established routes to fail [45]. 

In contrast, in DiffServ [27], the need for per-flow resource reservation as well as 

signaling in each router along a data path are eliminated. Traffic is divided into a small 

number of forwarding classes that have similar QoS requirements, and resources are 

allocated on a per-class basis. Most classification and policing are done at the network 

edge, and the classified and marked packets at the boundary of the network in ingress 

nodes receive a different Per-Hop forwarding Behavior (PHB) in interior nodes.  

Figure 8 shows the block diagram of a packet classifier and traffic conditioner. 

The packet classifier selects packets in a traffic stream based on information in the packet 

header, such as the flow ID field in IPv6 or the type of service (TOS) field in IPv4.  
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Figure 8. Block diagram of a packet classifier and traffic conditioner [After Ref. 

[27]). 
 

After classification, the meter measures the traffic stream against a specific traffic 

profile while the marker manipulates the packet’s Differentiated Services (DiffServ) field 

indicating that the packet has been added to a specific DiffServ behavior. The shaper 

delays packets of a traffic stream in order to conform to a specific traffic profile; 

therefore, when the shaper’s buffer is filled, packets are discarded.  

In MANETs, nodes serve the dual roles of router and source, which makes the 

distinction between ingress nodes and interior nodes complicated. Also, additional 

protocol processing is needed to carry out these dual roles, which in turn could lead to 

draining of the battery power. Consequently, a QoS protocol with low overhead is 

desirable for MANETs [14], [46]. 

RSVP and DiffServ protocols are designed to provide QoS under specific 

environments and applications. The highest level of QoS is provided by RSVP because it 

reserves the necessary bandwidth for a partial number of flows. However, this is achieved 

at the price of complexity and overhead. On the other hand, the overhead in DiffServ is 

low. DiffServ methods are characterized by their simplicity because the prioritization of 

packets is feasible using simple algorithms and flexibility because DiffServ is able to 

identify specific applications and determine different traffic profiles. Thus, an effective 

implementation of RSVP protocol is a very difficult task in MANETs. On the other hand, 
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DiffServ policies are more attractive since no signaling is necessary and the overhead is 

low.  

 

2. QoS Schemes 

The implementation of QoS protocols involves specific rules based on queuing 

algorithms that sort the arriving packets and/or prioritize them onto output links. These 

algorithms, called congestion control algorithms, can be divided into two categories: 

queue management and scheduling. Queue management QoS algorithms drop packets 

when necessary or appropriate in order to manage the length of the queue. Scheduling 

algorithms manage the allocation of the bandwidth among flows by determining which 

packet to forward next [28].  

 

a. Scheduling Algorithms 

There are a number of scheduling algorithms proposed in the literature to 

make the Internet a QoS-capable network [28]. Each queuing algorithm has been 

designed to solve a specific network traffic problem and has a particular effect on 

network performance. The following schemes are widely used for scheduling. 

First-in-First-out (FIFO), the simplest queuing scheme, lets the packets 

leave the queue in the order of their arrival. It also accepts packets until the queue is full 

and then drops the incoming packets.  

Custom Queuing (CQ) guarantees bandwidth at a potential congestion 

point by reserving a specific portion of the available bandwidth for one or more traffic 

flows. The remaining bandwidth is used to serve the other traffic.  

Weighted Fair Queuing (WFQ) categorizes traffic flows into high and low 

priority, based on volume of packets seen by a router or switch. Low-bandwidth flows are 

served first, and the remaining bandwidth is shared among the high bandwidth flows 

according to assigned weights. As a result, WFQ favors low-bandwidth traffic.  
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Priority Queuing (PQ) provides better treatment of some packets by 

serving them first. For example, in the case of two kinds of traffic, high and low priority, 

the high priority packets are served first.  

 

b. Active Queue Management Schemes 

Random Early Detection (RED) is the most widely used queue 

management scheme for congestion avoidance. The Internet Engineering Task Force 

(IETF) recommends implementing the RED queuing scheme as the best solution to 

improve performance in the Internet [28].  

The RED algorithm was initially proposed by Floyd and Jacobson [29] as 

an effective mechanism to control congestion in a network. The main goal of the RED 

algorithm is to avoid congestion rather than react to it. RED achieves this by detecting the 

onset of congestion in order to maintain the network in a region of low delay and high 

throughput [17]. In general, RED drops packets randomly with increased probability as 

the queue size grows. Additionally, RED algorithm improves the performance in TCP-

compatible flows by solving the global-synchronization problem and by reducing the 

burst errors due to buffer overflow. Specifically, it takes advantage of the back-off 

mechanism in TCP by dropping packets at random when traffic exceeds a predetermined 

threshold. This causes one TCP connection at a time to back off, reducing the congestion. 

Therefore, the back-off of almost all TCP connections, known as global-synchronization 

problem, is avoided. Additionally, RED reduces the burst errors due to buffer overflow 

because it drops packets randomly instead of the newly arriving packets. However, in the 

case of flows that are unresponsive to congestion notification, like real-time traffic using 

UDP, RED does not solve the problem with burst errors because it cannot control the 

source rate. Dropping packets early increases the total error compared to the error 

produced by the FIFO queuing scheme, which allows the smallest possible error for 

unresponsive flows [28]. 

The RED algorithm is described in [29] and works as depicted in Figure 9. 

For each arriving packet, a time-based average queue length is first computed. The 

algorithm has three congestion states: normal, congestion avoidance and congestion 
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control; and two thresholds, Θmin and Θmax. If the average queue length is less than Θmin, 

no packets are dropped.  If the average queue length is between the Θmin and Θmax, a 

randomly chosen packet from the queue is dropped with probability Pα, which is 

dependent on the average queue length. The dropping probability Pα varies linearly from 

0 to a maximum dropping probability of Pmax and is computed as  

,
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−
=  

where Nb is the number of packets since the last marked packet and  Pb is the marking 

probability (i.e., to mark packets eligible for dropping), given by 
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where Pbmax is the maximum possible marking probability, Θmax and Θmin are the 

maximum and minimum thresholds, respectively, and Lav is the average queue size that 

lies between  Θmax and Θmin as shown in Figure 9. If the average queue length exceeds 

Θmax, the packet is discarded unconditionally. The purpose of using the average instead of 

the instantaneous queue size is to filter out transient congestion at the node router.   
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Figure 9. RED queue management scheme (From [14]). 
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C. SUMMARY 

This chapter discussed QoS issues with emphasis on real-time traffic. Due to its 

distinct characteristics, real-time traffic requires preferential treatment in terms of both 

protocol structure and QoS guarantees. The chapter also described the RED algorithm. 

The QoS schemes RED and FIFO are used for the performance comparison of the 

proposed algorithm, presented in the next chapter. 
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IV. SELECTIVE EARLY DISCARD (SED) 

In this chapter we present a new active queue management scheme called the 

Selective Early Discard (SED) algorithm for real-time traffic over IP based networks. 

The key idea behind SED is simple: the more the errors are spread, the better the 

performance. This is not a new idea as it has been implemented in wireless digital 

channels in the form of interleaving, but it is a new idea for implementation in the 

management of the packet discarding policy algorithms. The reason for implementing 

interleaving in wireless channels is to reduce burst errors. Similarly, the problem with the 

existing queuing schemes for buffer management in the case of real-time traffic is that 

they suffer from buffer overflows, leading to significant degradation in performance. 

The proposed algorithm takes into consideration the specific characteristics of the 

real-time traffic and provides a solution that keeps all the advantages of the existing 

active queue management QoS schemes and reduces as much as possible burst errors due 

to buffer overflow. The proposed queuing scheme is able to provide acceptable QoS 

guarantees by adjusting the queue parameters according to the traffic in environments in 

which the existing algorithms do not work satisfactorily.   

SED’s performance evaluation scenario considers only real-time traffic. Although 

a majority of today’s network traffic is mixed (non real-time and real-time), this real-time 

traffic only scenario is used in order for the results to clearly reflect the performance 

benefits of SED for real-time traffic compared to other existing algorithms. In the current 

literature, new QoS service architectures have been proposed for IP-based networks that 

classify the traffic into multiple classes using MultiProtocol Label Switching (MPLS). In 

these service architectures, each service class implements a QoS scheme like FIFO or 

RED [48, 49]. Therefore, having only real-time traffic in the performance evaluation of 

the SED algorithm is not a simplification but rather a valid assumption for such 

architectures.  
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A. SED ALGORITHM 

The main objectives of the Selective Early Discard (SED) algorithm are 

congestion avoidance by selectively discarding packets and minimizing the burst errors 

due to buffer overflow by spreading them as much as possible.  

SED uses two thresholds. When the length of the queue exceeds these thresholds, 

we discard specific packets in order to spread the error. Considering that we have real-

time traffic, which means that we can neither retransmit the discarded packets nor reduce 

the rate of the sources, SED spreads the packet loss as much as possible. SED controls 

the packet delay by adjusting the position of the thresholds from the head of the queue of 

finite size. 

Pseudocode in Figure 10 outlines the SED algorithm. SED has two thresholds, Θ1 

and Θ2, and three parameters: selective dropping 1 (SD1), SD2 and SD3. The parameter L 

is the instantaneous queue size and K is the maximum queue size. There are three 

congestion states. In the first state, for queue length less than Θ1, no packets are dropped. 

If the buffer occupancy exceeds Θ1, we drop the first packet in the queue that has a 

sequence number that is an integer multiple of SD1. If there is no packet that satisfies this 

relation, no packets are dropped. For queue size above Θ2, we drop the first packet in the 

queue with a sequence number that is a multiple of SD2. If no packet in the queue 

satisfies this relation, again we do not drop any packet. Finally, if the queue size exceeds 

the buffer capacity, we discard the packet with sequence number that is a multiple of SD3 

or the first packet in the queue. 

 

B. PACKET DROPPING STUDY 

SED’s main goal is to drop packets for congestion avoidance in the presence of 

real-time traffic. We now study the effects of packet dropping on the voice quality in 

networks supporting voice over IP (VoIP) services.  
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For each arrival packet 
 Enqueue packet 
         Calculate the queue size, L 
   if { Θ1 < L < Θ2 }   
        if  { there is a packet in the queue 
               that satisfies  
               [(sequence number) % SD1 = 0] } 
               drop this packet 
   else if  {Θ2 < L < K  } 
        if  {there is a packet in the queue 
               that satisfies  
               [(sequence number) % SD2 = 0] } 
               drop this packet 
   else if  { L > K } 
        if  {there is a packet in the queue 
               that satisfies  
               [(sequence number) % SD3 = 0] } 
               drop this packet 
        else {drop the first packet in the queue} 

 
Figure 10. Pseudocode for the SED algorithm. 

 

1. Voice Quality and Packet Loss 

Voice quality can be measured in terms of a dimensionless quantity called 

impairment factor, I [39]. Table 1 lists numerical values of I and the corresponding 

perceptual voice quality. The voice impairment factor can be expressed as 

 

I = Id + Ie-A (4.1) 

where Id represents voice impairment due to long one-way transmission times (delay), Ie 

accounts for impairments caused by equipment and system related factors, and A is called 

expectation factor that depends on the network access method used [39]. 

The G.113 standard enumerates Id as presented in Table 2. The standard also 

specifies Ie for certain coders: 0 for G.711 and 10 for G.729 and G.729a. These Ie values 

do not take packet losses into account. Measured voice quality at several discrete packet 

loss levels for two voice coders used in VoIP are reported in the literature as listed in 

Table 3 [34]. When packet losses occur, measured Ie values in Table 3 are recommended 

instead of those in G.113. Table 4 lists expectation factor A for typical voice networks 

[39].   
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I Voice Quality 

5 Very good 

10 Good 

20 Adequate 

30 Limiting case 

45 Exceptionally limiting case 

55 Users likely to complain strongly 

 
Table 1. Voice impairment values and the corresponding perceptual voice quality 

(After Ref. [39]). 

 

Delay (msec) 150 200 250 300 400 500 600 800 

Id 0 3 10 15 25 30 35 40 

 
Table 2. Voice impairment values due to transmission delay Id (After Ref. [39]) 

 

Packet Loss (%) 0 1 2 3 4 5 6 7 8 9 

Ie for G.711 0 8 12 18 22 26 28 30 32 34 

Ie for G.729/G.729a 10 15 20 25 30 34 38 40 42 44 

 
Table 3. Measured Ie values (After Ref. [34]) 

 

Voice Network Access Method Expectation factor (A) 

Conventional telephone line 0 

Local area wireless network (cordless phone) 5 

Wide area wireless network (cell phone) 10 

Satellite 20 

 
Table 4. Expectation factor A for typical voice networks (After Ref. [39]). 
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Consider a G.729 coder used in a cell phone with a 4% packet loss and 150 ms 

delay. From Tables 2 and 3, we can determine I = Id + Ie - A = 0 + 30 – 10 = 20. Referring 

to Table 1, this value indicates adequate voice quality. For a packet loss of 7%, keeping 

the other parameters the same, the voice quality degrades to I = 30 (limiting case as in 

Table 1) which means that the conversation is understandable with moderate effort. For 

satellite channels, assuming a delay of 250 ms and a packet loss of 7%, the voice quality 

is acceptable (I = 30, limiting case).  

  Voice quality due to packet losses can be measured in terms of the widely used 

Mean Opinion Score (MOS) on a scale ranging from excellent (5) to bad (1). Figure 11 

shows plots of MOS as a function of packet losses for G.729 and G.723.1 [33]. Results 

indicate that as the packet loss increases, the voice quality degrades. However, even at an 

error rate of 5%, a MOS score of approximately 2.9 was achieved, which corresponds to 

acceptable voice quality.  

Error concealment techniques can be used to mitigate the effects of packet losses. 

Packet insertion for error concealment of the discarded packets is used in VoIP for the 

purpose of maintaining the timing relationship in a stream of packets. In silence 

substitution, a blank packet is substituted for the duration of the lost packet. In the packet 

repetition approach, a discarded packet is replaced by a copy of the packet immediately 

preceding the discarded packet. Two other techniques, interpolation and regeneration, are 

proposed in the current literature for concealing discarded packets. These are 

computationally more complex and relative to the insertion-based methods, the 

improvement achieved by these schemes is marginal, at best [35]. To provide toll quality 

in VoIP schemes, a packet loss of less than 2% and use of insertion based error 

concealment is recommended [33]. 

Consecutive packet losses significantly affect the voice quality. The effect of a 

missing packet on the listener is dependent on the size of the packet. Typically voice 

packets are 20 to 30-ms long. The smallest meaningful element of speech, the phoneme, 

has an average size of 80-100 ms. That means a loss of one packet generally does not 

adversely affect the voice intelligibility. In contrast, in the case of consecutive packet 

losses, 40 to 60 ms of speech may be missing, which may cause considerable degradation 
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in voice quality. A whole phoneme could possibly be missed, and the substitution error 

concealment methods do not work well. Silence substitution results in gaps while packet 

repetition results in harmonic artifacts or beeps. In summary, consecutive packet losses 

cause significant degradation in voice quality [33], [34], [39].   
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Figure 11. Packet Loss effects for G.229 and G.223 speech coders [After Ref. 33]. 

 

 

2. Experimental Packet Dropping Study for FS1016 

This section presents experimental results using a Federal Standard 1016 

(FS1016) coder with packet losses. FS1016 is based on the Code Excited Linear 

Predictive (CELP) coding algorithm. In FS1016, voice waveforms are first sampled at 8 

kHz with a precision of 16 bits per sample. The CELP compressed voice packets 

represent 30-ms segments of voice or 240 samples and contain 144 bits. For these 

experiments, these packets are then subjected to loss using a Matlab function. The voice 

packets after losses are decompressed and played back.  

For the purposes of designing an effective packet dropping algorithm, the 

objective is to figure out a packet discard pattern that provides the lowest voice quality 
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degradation for the same amount of packet loss. This study defines quality according to 

three levels of perception: small degradation, significant voice degradation and 

unacceptable voice quality.  

Table 5 summarizes experimental results of several speech files and error 

patterns. Three different error patterns were investigated in this experiment. First, the 

errors are spread as much as possible. For example, in the case of 5% error, we uniformly 

discard one packet every 20. Second, packets are discarded at random. For example, for 

5% error, we lose 5 packets randomly in every 100 packets. Third, two consecutive 

packets are discarded. For example, with 5% error, we discard the 19th and 20th packets 

every 40 packets. In all cases we use silence substitution in place of a lost packet. The 

results reported in Table 5 are solely based on the author’s perception of reconstructed 

speech after packet loss. 

Results reported in Table 5 are based on the author’s judgment of voice quality 

for different packet loss patterns. Table 5 indicates that the quality of voice is best when 

the errors are spread as much as possible. The consecutive packet errors cause a 

significant degradation in voice quality, which was found to be unacceptable if the error 

is more than 5%.  

 

Voice quality Percentage of 
packets 

discarded Spreading the 
error 

Random error Error in 2 
consecutive packets 

5% Small Small Significant 

10% Small  Significant  Unacceptable 

15% Significant  Unacceptable  Unacceptable  
 

  Table 5.  Reproduced voice quality as observed by the author for three error 
patterns. 

 
 

C. SED/IO ALGORITHM 

Selective Early Discard with IN/OUT (SED/IO) is an extension of the SED 

algorithm that uses traffic prioritization in order to provide better service to specific 

flows. The traffic prioritization is based on  DiffServ [27] in which packets are marked as 
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either IN or OUT. Also, each type of traffic (IN or OUT) uses a separate SED algorithm 

with a different set of parameters for more flexibility in providing the desired QoS. 

Figure 12 provides the pseudocode of the extended algorithm. For each packet 

arrival, the total queue size is calculated and the packet’s differentiated field is examined. 

If it is an IN packet, the SED algorithm for IN packets is implemented; otherwise, the 

SED algorithm for OUT packets is implemented. Packets are discarded according to the 

specific parameters of each SED algorithm. Additionally the SED algorithm for OUT 

packets typically has a third threshold lower than the maximum buffer capacity. That 

means if the queue size exceeds the third threshold for OUT packets and an OUT packet 

has arrived, an OUT packet with sequence number that is an integer multiple of SD3 or 

the first packet in the queue is discarded. 

 

For each arrival packet
   Enqueue packet 
   Calculate the queue size, L 
      if { it is an IN packet } 
          implement algorithm  

for IN packets 
      else 
           implement algorithm  

for OUT packets 

Figure 12.  The SED/IO algorithm. 

 

By adjusting the parameters for the IN and OUT packets, we are able to 

preferentially treat the high priority (IN) packets in two ways. First, using IN thresholds 

larger than the corresponding OUT thresholds, which results in early dropping of OUT 

packets with respect to IN packets. Second, by choosing lower dropping parameters 

(SDs) for OUT packets, we increase the dropping probability of OUT packets. 

 

D. SED AND SED/IO USING TIMESTAMPS 

QoS implementation in IP based networks takes place in the network layer in 

which routers read the IP header and apply pre-specified rules for each packet. However, 
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in the case of real-time traffic, the RTP header contains significant information in the 

timestamp field. The timestamp contains the creation time of each packet; therefore, a 

packet delayed beyond a bound can be detected in an intermediate router. By dropping 

this delayed packet, the queue size does not increase, hence the queuing delay for packets 

arriving after the dropped packet is decreased. Examination of the RTP header by a router 

presents some difficulties but it is feasible as explained in the next section. 

SED with timestamps spreads the error as much as possible and reduces the 

queuing delay. Pseudocode of the algorithm using timestamps is provided in Figure 13. 

At each packet arrival, the timestamp in the RTP header is read and compared with the 

local time in the router, and the packet delay is computed. A packet is considered late 

whenever its measured delay exceeds the maximum allowed predetermined one-way 

delay (Dmax) and, if such is the case, it is dropped. If the packet is not late, it is further 

processed by SED or SED/IO algorithm as explained in the previous sections. 

 

For each arrival packet
   Enqueue packet 
   Read the timestamp in RTP header 
      if { (pkt time – Local Time) > Dmax } 
 drop the packet 
      else 
 implement SED or SED/IO algorithm  

Figure 13. Pseudocode of the SED and SED/IO algorithms using timestamps. 

 

E. IMPLEMENTATION ISSUES 

In this section, we describe how the SED and SED/RIO can be implemented in 

IP-based networks. The issues we address are marking of packets, dropping of a chosen 

packet, and reading of the RTP header. 

The packets can be marked using bits from the Differentiated Services (DS) byte 

field. This field is defined in DiffServ [27] and is intended to supersede the existing 

definitions of the IPv4 TOS octet [30] and the Ipv6 Traffic Class octet [31]. The 

reconstructed field is presented in Figure 14 and has the following subfields: the 6-bit 
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differentiated services codepoint field (DSCP) and the 2-bit Currently Unused (CU) field. 

The DSCP is further divided into a 1-bit “IN” field, which indicates whether the packet 

conforms to a predefined profile with respect to the traffic policies at a network 

boundary, and a 5-bit PHB field, which marks the required per-hop-behavior of each 

packet. The two bits in the CU field are ignored by DiffServ nodes when determining the 

per-hop-behavior to apply to a received packet.   

PRECEDENCE TOS MBZ

Current IPv4 Type of Service field

Proposed DS byte field

IN PHB CU

1

2 3

0

4 5 6 710

2 3 4 5 6 7

DSCP  
 

Figure 14. Allocation of bits in the type of service byte (Ipv4) to support DiffServ 
[After Ref. 32]. 

 

The SED/RIO algorithm uses the six bits of the DSCP field to preferentially treat 

certain flows as in DiffServ. Additionally, both SED and SED/IO utilize the two unused 

bits of the CU field to indicate whether a packet is droppable and in which congestion 

state. More specifically, each packet is marked at the source using the CU bits as follows: 

“00” for a packet that is not droppable, “01” for a packet droppable in the first congestion 

state, “10” for the packets droppable in the second state, and “11” for the packets 

droppable in the third state. This classification of packets into multiple droppable states is 

based on the sequence numbers and the predetermined SD parameters. The sequence 

numbers, which are created at the source at the time of packet generation, are available 

from the corresponding field in the RTP header. When the IP header is added to a packet, 

the sequence number is examined and the droppable state of the packet is marked using 
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the CU bits in the DS byte field. For example, if SD1 for a specific source is 20, all 

packets generated by this source having sequence numbers that are integer multiples of 

20 are droppable in the first congestion state. Therefore, these packets are marked in the 

CU field with “01,” indicating their droppable state. This allows the routers with DiffServ 

capabilities to read the two CU bits in the DS byte field and to acquire the necessary 

information for implementing the SED algorithm.  

There are three important considerations in the implementation of the SED 

algorithm and its extensions. First, SED and SED/IO take advantage of the sequence 

numbers in order to spread the error. Second, traffic is divided into four classes based on 

the droppable state to which each packet belongs. Thus, the amount of state information 

in each node is reduced to the number of droppable states rather than to the number of 

flows, leading to increased scalability. Third, the predetermined SD parameters can be 

different for different real-time applications (e.g., voice, video) because marking of 

packets takes place at the source. Therefore, SED is capable of discarding packets 

according to specific requirements of each application. 

The next step in the implementation of SED is to examine the mechanism of 

dropping a packet. In order to avoid extensive computations for each incoming packet, 

the following procedure is proposed. Consider a 3×K array, where K is the maximum 

queue size in terms of packets and 3 indicates three droppable states; each row 

corresponds to one droppable state. When a packet arrives, the router examines its CU 

field to see if it is droppable. For example, if a packet is droppable in the second state 

(CU field of “10”) the position from the head of the queue for this packet is stored in the 

second row of the matrix. Entries in a row indicate the droppable packets in the 

corresponding state. When the queue size exceeds a threshold, the droppable packets 

within the queue for this congestion state are available from the corresponding row. For 

example, if the queue is in the second droppable state {Θ2 < L < K}, the first packet from 

the second row of the matrix is dropped. If the second row is empty, then no packet is 

dropped. Each time a packet is sent or the first packet in the queue is dropped, the 

positions from the head of the queue for the droppable packets in the matrix are updated. 

Additionally, when a packet is dropped from a droppable state the index elements of the 
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matrix are updated for all the packets that are farther from the head of the queue. Figure 

15 illustrates an example of updating the matrix elements when a packet belonging to a 

droppable state is dropped. Assuming that a packet arrives and the queue size is in the 

second droppable state (Θ2 < L < K), the packet corresponding to the first index element 

of the second row (45th packet of the head of the queue) is dropped. Then, the index 

elements in the matrix are decreased by one if their value is greater than the value 

corresponding to the dropped packet (45). 
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Figure 15. Example of updating matrix values in case of discarding the packet of the 
second droppable state. 

 

In the above implementation, no extensive computations are required in the time-

critical packet-forwarding path in order to drop packets. Updating the positions of the 

droppable packets from the head of the queue can be performed in parallel with packet 

forwarding. As it can be performed as a low priority task, the node’s ability to process 

packets is not affected. 

 

F. SUMMARY 

This chapter presented a new packet dropping algorithm called Selective Early 

Discard (SED). An experiment involving packet loss in voice traffic is conducted to study 

the effects of loss on voice quality for different loss patterns. SED was extended to 

SED/IO to provide priority to critical data and to SED with timestamps to selectively 
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discard overly delayed packets at the intermediate nodes. Also, implementation issues for 

SED and its extensions were addressed.  
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V. BIT DROPPING 

This chapter investigates an active queue management technique that drops bits 

instead of whole packets. This method is motivated by work in [36] in which a bit-

dropping scheme for ADPCM voice packets is presented. A few different approaches for 

dropping bits and recovering the missing bits are discussed. Then, a bit-dropping study 

for the FS 1016 CELP codec is examined for its tolerance to bit dropping with respect to 

voice quality and a proposed dropping pattern for this coder is given.  

 

A. BIT DROPPING FOR MULTIMEDIA TRAFFIC  

Compressed multimedia data is formed into frames composed of the parameters 

and coefficients associated with the particular compression algorithm used. The key idea 

in bit dropping is to selectively drop bits within a buffer during times of congestion. This 

loss of bits will result in signal degradation, but many multimedia applications (such as 

voice) are loss tolerant so that an acceptable signal can be recovered. A disadvantage of a 

bit-dropping scheme is that in order to selectively drop bits, the algorithm must have 

access to the data payload. This requires a modification to the router’s functionality. The 

determination of when to apply bit dropping can be based on buffer thresholds, such as 

those used with SED: when the buffer gets too full, bit dropping would be implemented. 

 Bit-dropping techniques can be divided into two general categories: dropping of 

less significant bits (of coefficient values for example); and dropping of certain segments 

of each frame (such as dropping an entire coefficient or parameter value). Dropping of 

less significant bits can be done similar to the one presented in [36], where each voice 

packet is organized at the source into four blocks: the first block contains the least 

significant bits, while the fourth block contains the most significant bits. During periods 

of congestion, one or more blocks are dropped (less significant block first) in order to 

speed the packet service time within the queue. 
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On the other hand, in compressed voice, specific parts from each voice packet can 

be dropped and substituted by using previous packet substitution or intraframe 

substitution. Substitution using the previous packet means that the corresponding bits 



from the previous received packet replace missing bits. Intraframe substitution is the 

replacement of the missing bits from similar bits within the same frame. As in the 

dropping of less significant bits, voice packets are formed into blocks and specific blocks 

are dropped during periods of congestion in the buffer, based on their sensitivity on voice 

quality.  

Based on the above discussion, a pseudocode of a bit-dropping algorithm can be 

as depicted in Figure 16. There are two thresholds Θ1, Θ2 and the maximum buffer 

capacity is K. The instantaneous queue size is L. For each incoming packet, the queue 

length is calculated and specific blocks are dropped when queue size exceeds a threshold. 

For example, if it exceeds the first threshold the least significant block of the just arrived 

packet is dropped. Note that when a block is dropped, the IP length field must be 

updated. Finally, if the queue size exceeds the maximum buffer capacity the packet is 

dropped unconditionally.    

For each arrival packet 
 Enqueue packet 
         Calculate the queue size, L 
   if { Θ1 < L < Θ2 }  

(drop the least significant block 
of the last packet) 
(update IP’s length field) 

   else if  {Θ2 < L < K  } 
(drop the second least significant block 
of the last packet) 
(update IP’s length field) 

   else  
 (drop the last packet) 

 
Figure 16. Pseudocode of the bit-dropping scheme. 

 
B. BIT DROPPING 

In this section, a study is conducted using a CELP coder for its tolerance to bit-

dropping. A CELP coder constructs a speech frame based on codebooks. That means an 
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error in a bit, even if it is a less significant bit, can significantly degrade the voice quality. 

Additionally, each frame has adaptive and stochastic indices and gains that depend on the 

voice characteristics. Since voice characteristics do not change much over a short period 

of time, substituting indices and/or gains is possible. This study aims to provide general 

guidelines about the degradation in voice quality when specific bits of voice frames are 

dropped. Note that results are mainly based on listening tests using the author’s 

perception of reconstructed speech after bit-dropping.  

 

1. Experiments Using the FS1016 CELP Coder 

The particular implementation being considered for CELP encoded speech is the 

4800-bps Federal Standard 1016 (FS1016) [37]. Table 6 lists the main characteristics of 

the codec. FS1016 divides the speech to be coded into 30-ms frames, each of which is 

further divided into four 7.5-ms subframes. Consequently, each frame contains 240 

speech samples at a sampling rate of 8,000 sps. This codec uses a Hamming parity code 

(15,11) for forward error correction. The protected bits are the three most significant bits 

of the first and third subframe’s adaptive indexes, and the most significant bit of the 

adaptive gains and the expansion bit. The frame synchronization bit alternates between 

zero and one from frame to frame. 

 
 

 Linear Predictor Adaptive codebook Stochastic codebook 

Update 30 ms 30/4=7.5 ms 30/4=7.5 ms 

Parameters 10 LSPs 256 codewords 512 codewords 

Bits per 

frame 

34 

(3,4,4,4,4,3,3,3,3,3) 

Index:8+6+8+6 

Gain: 5x4 

Index: 9x4 

Gain: 5x4 

1113.33 1600 1866.67 Rate 

(4800 bps) * The remaining 200bps are used as follows: 1 bit per frame for synchronization, 4 bpf for 

FEC and 1 bpf to provide future expansion(s) of the coder. 

 
Table 6. Federal Standard 1016 characteristics (After Ref. [37]). 

 
 

a. Dropping of Less Significant Bits  

In the experiments, FS1016 CELP v.3.2 for Matlab [38] was used, having 

as input Windows standard 16 bit .wav files sampled at 8,000 Hz. This code was 
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modified in order to provide results for different bit dropping patterns. In particular, the 

simulation model inserts zeros into specific bits in each packet according to a bit-

dropping scenario. Then the packets are played out in the decoder assuming that the 

dropped bits are not transmitted. 

The bit dropping schemes shown in Table 7 are the least significant bits 

for each index/gain. For example in the dropping scheme of 10 bits, the least significant 

bit of the adaptive gain of each second and fourth subframe, all stochastic indexes and 

gains is dropped. According to the listening tests of these bit-dropping schemes, only in 

the case of dropping 10 bits is the voice quality acceptable. 

 
Bits 

dropped 
Adaptive  

(4 per frame) 
Stochastic 

(4 per frame) 
 

LSP pairs 
(10 pairs per frame) 

Gain Index Gain Index 
10 0+0+0+0+0+0+0+0+0+0 0+1+0+1 0+0+0+0 1+1+1+1 1+1+1+1 
21 0+1+0+1+0+1+0+1+0+1 1+1+1+1 1+1+1+1 1+1+1+1 1+1+1+1 
36 1+2+2+2+2+1+1+1+1+1 1+1+1+1 1+1+1+1 1+1+1+1 1+1+1+1 

 
Table 7. Bit dropping schemes. 

 

Due to complexity in the implementation of a bit dropping technique and 

the small bandwidth savings in the 10-bit dropping scheme, the use of this technique is 

not recommended. However, by implementing a bit-dropping scheme based on bit 

sensitivity instead of less significant bits, the bandwidth savings can be greater. This is 

the result of CELP encoded speech in which each bit has a different weight that 

influences the overall performance differently. 

 

b. Dropping of LSPs, Indexes and/or Gains  

This section discusses dropping of Line Spectrum Pairs (LSPs), and/or 

adaptive and stochastic indexes and gains to satisfy the objective of reducing the required 

bandwidth for transmission of voice. In the experiments, the original FS 1016 Matlab 

code was modified using the necessary Matlab functions for extracting and processing 

each packet. Substitution using the previous packet and intraframe substitution as 

mentioned in a previous section are examined in order to recover the missing bits.  
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In the simulation scenario of substitution using the previous packet, the 

missing components are changed every other packet in order to avoid the propagation of 

error. For example, in the case of transmitting only 8 LSP pairs instead of 10, in one 

packet LSP pairs 8 and 10 are dropped while in the consecutive packet LSP 7 and 9 are 

not transmitted.  

Based on listening tests, intraframe substitution provides better voice 

quality compared to previous frame substitution. This was expected because, in FS1016, 

a speech frame is 30 ms long and thus, the characteristics of the speech signal do not 

change much within each frame. In contrast, from frame to frame, the change in the 

values of LSPs, indices and gains can typically be significant.  

Using intraframe substitution, the behavior of LSP pairs, adaptive and 

stochastic indexes and gains is examined separately by defining quality according to four 

levels of perception: slight degradation, small degradation, significant voice degradation 

and unacceptable voice quality.  

Results indicate that by transmitting only 7 of the 10 LSP pairs, the voice 

degradation is small. The total bandwidth savings per frame is 10/144 = 7%. 

Furthermore, slight voice degradation exists when missing one LSP and, in contrast, 

significant degradation exists when transmitting 6 LSPs. Finally, when transmitting only 

half of the LSPs, the voice quality is unacceptable. 

Adaptive and stochastic indices and gains are also examined for an 

indication of possible bandwidth savings. Results are summarized in Table 8. In general, 

adaptive indices and gains are more sensitive compared to stochastic indices and gains. 

For example, when transmitting half of the adaptive indices, the quality is unacceptable. 

In contrast, when transmitting half of the stochastic indices or gains, only small voice 

degradation occurs.  Additionally, when only one stochastic index or gain is kept per 

frame, significant degradation occurs but voice quality is still acceptable. 
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 Number of Dropping indexes per frame 
 1 2 3 

Adaptive indexes Significant  Unacceptable --- 
Adaptive gains Small Small Unacceptable  

Stochastic indexes Slight Small Significant  
Stochastic gains Slight Small Significant  

 

Table 8.  Results for dropping adaptive and stochastic indexes and gains. 
 

c. Bit-Dropping Scheme for FS1016 CELP Coder 

Based on the above results, dropping of less significant bits does not 

provide large bandwidth savings with respect to voice quality, intraframe substitution is 

better when compared to previous frame subsitution, and adaptive indexes and gains are 

more sensitive.  

The dropping of less significant bits does not provide good performance 

because each bit in a compressed voice packet carries more information and, therefore, is 

more sensitive to loss than that in an uncompressed voice packet. The intraframe 

substitution of LSPs, indexes and gains in CELP coders performs better than the previous 

frame substitution due to the distinct characteristics of CELP coders. Specifically, in 

FS1016, a speech frame is 30-ms long and thus, the characteristics of the speech signal 

do not change much within each frame. Therefore, the values of the indices and gains in 

consecutive 7.5-ms subframes change less compared to subframes from previous packets. 

Finally, results based on listening tests indicate that the loss of stochastic indexes and 

gains is better than the lack of the adaptive indexes and gains.  

   By taking these observations into account, the proposed bit dropping 

scheme does not transmit the stochastic index and gain of the second subframe. 

Furthermore, the 7 less significant bits from the stochastic index of the fourth subframe 

and the 10th LSP are not transmitted. In order to conceal the signal loss due to the missing 

bits, intraframe substitution is used. More specifically, the stochastic index and gain of 

each second subframe are substituted from the corresponding index and gain from the 

first subframe. Also, the missing bits of the stochastic index of the fourth subframe are 

substituted by bits from the third subframe. Finally, the 9th LSP substitutes for the 

missing LSP. Overall, the proposed scheme transmits only 120 bits of each frame, 
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leading to a 16.6% bandwidth saving. Listening results show that by using this scheme 

the degradation of voice is acceptable. Additionally, the proposed scheme is superior 

compared to a similar one that drops the least significant bits in terms of bandwidths. In 

particular, the scheme that drops 24 least significant bits results in unacceptable voice 

quality.  

 

C. SUMMARY 

In this chapter a bit-dropping scheme utilizing different techniques were 

discussed. Additionally, a bit-dropping study for a specific CELP coder, the FS1016, was 

conducted. Results, based mainly on listening tests, showed that speech frames can be 

transmitted using fewer bits with tolerable performance degradation. The proposed bit- 

dropping scheme in which only 120 of the 144 bits were transmitted for each frame 

(16.6% bandwidth saving) provides acceptable voice quality. This scheme can be used 

when congestion occurs in the buffer in order to avoid buffer overflow.  
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V. RESULTS AND DISCUSSION 

MANETs are characterized by dynamic multi-hop topologies in which the nodes 

can move arbitrarily, changing the topology rapidly depending on the scenario.  This 

results in traffic flows and service times that do not necessarily follow a Poisson or 

exponential distribution. Additionally, partitioning/merging of traffic and non-

independent service distributions make a mathematical analysis based on queuing theory 

infeasible [45]. Consequently, the performance evaluation in this thesis is based on 

simulations. This chapter presents the simulation environment and simulation results for 

the evaluation of the proposed QoS algorithms.  

 

A. SIMULATION ENVIRONMENT 

The simulation software used for evaluation of the proposed QoS schemes was 

the Network Simulator 2 (NS2) version 2.1b6 [42] running on a Linux RedHat 6.2 

platform. At the time of writing this thesis, NS2 seems to be the standard tool to simulate 

ad hoc networks. Many routing protocols that are used in MANETs are available in NS2. 

This section describes the basics of NS2 and the modifications to some NS2 functions to 

simulate the QoS algorithm reported in this thesis. Additionally, the simulation 

parameters and the performance metrics are discussed. 

 

1. Network Simulator 2 
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The NS2 was developed by the network research group at the Lawrence Berkeley 

National Laboratory (LBNL).  Currently, NS2 is part of the Virtual InterNetwork Testbed 

(VINT) project, which is a collaborative effort between LBNL, University of California 

at Berkeley (UCB), the University of Southern California/Information Science Institute 

(USC/ISI) and Xerox Palo Alto Research Center (Xerox PARC). The goal of the VINT 

project is to extend the NS simulator so that network researchers can study the complex 

interactions between network protocols (e.g., unicast routing, multicast routing, TCP, 

reliable multicast, integrated services, etc.) in complex topologies with a rich set of traffic 

generators [42]. 



 
 
2. Simulation Overview 

The NS2 is a discrete event simulator written in C++ programming language and 

uses Object Tool Command Language (OTcl) interpreter at the user level. Figure 17 

depicts a simplified user’s view of NS2 [42]. A typical simulation in NS2 includes 

several steps. First the user creates the OTcl scripts, which are the input files to the 

simulator. These files consist of a scenario file that describes the movement pattern of the 

nodes and a communication file that describes the traffic in the network. Then the 

simulator initiates an event scheduler and sets up the network topology using the network 

objects and the plumbing functions in the library. Also, it informs the traffic sources 

when to start and stop transmitting packets through the event scheduler. The result of this 

procedure is the generation of a trace file. The granularity of the trace files is determined 

prior to simulation in the OTcl scripts. Typically, the trace files are parsed using Perl or 

another Linux shell script allowing the performance metrics of interest to be obtained. 

Finally, the analyzed data from the trace files can be used for further manipulation and 

plot generation using other languages like Matlab. Another option that can be defined in 

the OTcl scripts is the visualization of the simulation run using the Network Animator 

(NAM). 

OTcl: Tcl interpreter
with OO extension

NS Simulator Library

- Event Scheduler Objects
- Network Components Objects
- Network Setup Helping

        Modules (Plumbing Modules)

OTcl Script
Simulation
Program

Simulation
Results Analysis

NAM
Network
Animator

 
Figure 17. A simplified user’s view of NS2 (After Ref. [42]). 
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NS2 provides a wireless model consisting of mobile nodes that allow simulations 

of multihop ad hoc networks. Figure 18 shows the basic components of a mobile node. It 

consists of a routing agent, link layer (LL), Address Resolution Protocol (ARP), interface 

queue, MAC protocols, network interface, radio propagation model and a channel. A 

mobile node is responsible for forwarding packets to the destination. Packets can be 

received from an application or from another node. The routing agent decides the path of 

each packet to its destination, stamps it with this information, and sends the packet to the 

LL. If the ARP has the hardware address of the destination, it inserts the address in the 

MAC header. Otherwise, the packet is buffered and an ARP query is sent. Once the 

hardware address of a packet’s next hop is known, the packet is sent to the interface 

queue. Next, when the MAC layer decides that it can send a packet onto the channel, it 

fetches the packet from the head of the queue and forwards it to the network interface. 

Finally, the packet is sent onto the radio channel. This packet is copied and delivered to 

all network interfaces at the time at which the first bit of the packet would begin arriving 

at the interface in a physical system. Each network interface stamps the packet with the 

receiving interfaces’ properties and then invokes the propagation model. 

 

3. Modifications 

NS2 version 2.1b6 is an open platform that provides the necessary components 

for simulating multihop ad-hoc networks. However, for the evaluation of the proposed 

QoS schemes, changes had to be made. The main changes and added functions are related 

to the generation of script files, the implementation and integration of the QoS schemes,  

and the processing of the results. 

Following the typical procedure in NS2, input script files were generated. For 

each simulation scenario, one Tcl script determines the traffic pattern and another the 

mobility scenarios of the nodes. A third Tcl script defines the characteristics of the 

mobile nodes, such as routing and queuing parameters, MAC protocol and physical layer 

parameters. Finally, the parameters that were traced during the simulation were defined in 

these files.  Generally, the new Tcl scripts are similar to the ones available in NS2, with 

53 



necessary changes for incorporation of the added functionality. Additionally, each 

simulation scenario uses its own unique Tcl input files. 

Entry Point

Application
Source/Sink

Routing Agent
DSR modified to support

new queue types

Interface Queue
SED or FIFO or RED

MAC 802.11
(ranges>250m)

Network Access
Interface

Propagation Model
Two Ray Ground

Channel

M
U
X

ARP

Traffic
Conditioning

Link Layer

 

Figure 18. Schematic of a Mobile Node Protocol Stack in NS2 (After Ref. [42]). 
 

Only one QoS scheme, FIFO, is offered in NS version 2.1b6 for implementation 

in MANETs. For the simulation of the RED algorithm, functions from other researchers 

were used [43], [44], [14]. The QoS schemes developed in this thesis were implemented 

in C++ and embedded into NS2. Appendix A contains the code of the proposed SED QoS 

schemes. Furthermore, the simulations include transmission range of 10 km for each 

node, which is larger than the default value of NS2 (250 meters). This expansion was 

made following the procedure in [14], which involves the modification of the MAC C++ 

code in order to change the standard timing parameters of the Distributing Coordination 
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Function (DCF). Also, the received and transmitted power of each mobile node’s network 

interface was adjusted in accordance with the larger ranges. 

 The trace files were processed by parsing them into perl files for extracting of 

required data. Then, the data were further analyzed in Matlab and plotted. 

 

4. Performance Metrics 

Typically, the performance of a network is measured by using as metrics the 

average end-to-end delay, the packet loss and the throughout. All these metrics are used 

for the evaluation of the proposed algorithms. However, the traffic under investigation is 

real-time voice as the packet loss distribution significantly affects its quality; in 

particular, consecutive packet losses are of interest here. 

Packet loss distribution can be measured as a function of the frequency of 

intervals between packet losses. The frequency of packet loss is calculated as  

 

)1.6(
1-LossesofNumber Total

 Interval of sOccurrence ofNumber   Interval ofFrequency ii =

 

For example, if in 10 consecutive packets the 3rd, 4th, 5th, 7th, 9th and 10th packets are 

missing, we have 3 occurrences of losing 2 consecutive packets (interval equal to one) 

and 2 occurrences of losing packets separated by one packet (interval equal to two). As a 

result, considering that the total number of missing packets is 6, the frequency of one-

packet interval is 3/(6-1) = 0.6 and of two-packet interval is 2/(6-1) = 0.4. In other words, 

the frequency value of the interval one represents the probability of losing one packet 

every other packet. For example, a frequency 0.1 for an interval of one means that we 

expect 10% of the total losses to happen in two consecutive packets. Burst losses are 

measured using the distribution of consecutive packet losses.  

The performance metrics are mainly measured against mobility, offered traffic 

load and network size. Mobility corresponds to the movement of the ad hoc nodes. In the 

simulations, the pause time of each node is changed while the speed of the node during 

motion remains constant. Traffic load scenarios consist of low traffic load corresponding 
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to packet losses in the range of 0.5-1.5% and heavy traffic load corresponding to packet 

losses above 3%. Network size is represented in terms of the number of nodes and the 

size of the area in which mobile nodes roam.   

 

5. Network Configuration 

Many different network configurations were used in the simulation runs. Table 9 

shows the parameter values used in NS2 simulations. The number of nodes is 2 or 10 and 

source rates are from 240 kbps to 300 kbps. The voice traffic in the simulations is 

represented by ON/OFF sources; typical values used for the on/off periods are 0.42 sec 

and 0.58 sec, respectively. It is assumed that silence detection is employed, hence packets 

are generated only during talk-spurt periods. The overhead from the RTP, UDP and IP 

layers is 40 bytes, which can be decreased to 2-4 bytes using compression [23]. In the 

simulations, the packet length was set to 210 bytes and the node velocity is in the range 

of 0-20 m/s. Moreover, the maximum transmission range of 802.11 is increased to 10 km, 

and different mobility scenarios are examined in terms of pause times. Simulations are 

run for various geographical sizes of 5×5, 10×10 and 30×30 km2. Also of factor are the 

processing time and the computer’s hard disk space. 

 
Parameter Range of values Units 
Source rate 240-300 kbps 
Packet size 210 bytes 
Traffic type VBR/UDP --- 

Queuing schemes SED, RED, FIFO --- 
Buffer size 160-200 packets 

Routing protocol DSR --- 
MAC protocol 802.11 --- 

Transmitter range 10 km 
Area size 5×5, 10×10, 30×30 Km2 

Number of nodes 0 or 10 --- 
Node velocity 0-20 m/sec 

Pause time 0, 200, 400, 600, 800, 1000 sec 
Transmitted power 50 watts 

Antenna heights 10 m 
Bandwidth 2 Mbps 

 
Table 9. Parameters used during NS2 simulations. 
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B. SENSITIVITY OF THRESHOLDS 

The network topology used in simulations for examining the sensitivity of SED’s 

thresholds is shown in Figure 19. It represents a simple ad hoc network scenario in which 

two nodes are moving inside an area of 5×5 km2 with a constant velocity of 20 m/sec 

(pause time 0). Each node has five hosts. In one node, the hosts are sources that send data 

while in the other node the hosts are destinations of the sources. The data rate of each 

source is 300 kbps, and the maximum buffer size is 200 packets. The small area of 5×5 

km2 was chosen in order for the routing losses to be negligible compared to those due to 

buffer overflow. The buffer size was selected according to the delay limitations. The 

delay and network congestion are directly proportional to the buffer size and source rate, 

respectively. The results presented in the following are obtained by averaging results 

from five independent simulation runs. The total number of packets sent from the sources 

is approximately 365,000 packets per source in each simulation run. 

Based on the results reported for the VoIP [33], [34], [39] and the experimental 

results for the FS1016, the selected dropping parameters SD1, SD2 and SD3 were 

assigned values of 20, 10 and 5, respectively. Using the above described simulation 

model, the appropriate values of the first and second thresholds in terms of the queue 

length were investigated. The third threshold is always equal to the maximum buffer size. 

Results are presented for three different choices of first and second threshold values 

(Θ1=170, Θ2=190), (140, 180) and (100, 180).  

 

 

Router Router

 
Figure 19. Network topology for investigation of thresholds for SED scheme. 
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Figure 20 shows the frequency of packet losses in terms of packet intervals. The 

packet losses are concentrated in intervals 20, 10 and 5, and this error pattern represents 

the scheduling of packet dropping according to parameters SD1, SD2 and SD3. The 

thresholds influence the frequency of losses in these intervals. For example, by selecting 

the threshold pair SED (100, 180), we have more packet losses in intervals of 20 while 

the threshold pair SED (170, 190) with larger values has more packet losses in intervals 

of 5. 
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Figure 20. Frequency of packet loss in terms of packet intervals for the first 20 

intervals. In each interval the first (left) bar corresponds to SED (170, 190), the second to 
SED (140, 180) and the third to SED (100, 180). Plots are obtained by averaging results 

from five connections. 
 

By decreasing Θ1, the packet errors are reduced in intervals 1-5, which simply 

means that burst errors are smoothed; the average delay is decreased, but more packets 

are dropped early. SED (170, 190) has an average delay of 149 ms and an error of 2.72% 

while has corresponding values for SED (100, 180) are of 137 ms and 3.22%, 

respectively. Therefore, there is a trade-off in the selection of the thresholds among the 

average delay, the total error, and better performance in the more sensitive area of packet 
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loss. We choose SED (140, 180) in the remaining simulations as this pair is found to 

perform better than other choices. 

 

C. COMPARISON WITH RED AND FIFO 

In this section we compare the proposed algorithm with the RED and FIFO 

queuing schemes. The network configuration was similar to the one in the investigation 

of threshold values. Specifically, 2 nodes, area size of 5×5 km2, pause time of 0 sec, 

source rate of 300 kbps and maximum buffer size of 200 packets were used. The 

thresholds for the SED algorithm were Θ1=140 and Θ2=180. The parameters of the RED 

algorithm were selected according to the guidelines in [29]. In particular, we set the 

queue weight parameter to 0.002, the maximum dropping probability Pmax to 0.3, the 

minimum threshold to 160, and the maximum threshold to 200. It was observed that a 

larger Θmin makes RED behave like FIFO while a lower minimum threshold results in 

significant increase in the total error compared to the error in the FIFO scheme.  

From Table 10, the FIFO queuing scheme provides the smallest possible error 

2.53% because it does not drop until the queue is full and has an average delay of 158 ms. 

SED does not cause a significant increase in the total error as RED does because SED 

drops only a small number of packets below Θ2. The average number of droppable 

packets when the queue exceeds the minimum threshold for the first time is Θ1/SD1. 

When Θ2 is exceeded, more packets are dropped; however, by setting Θ2 close to the max 

buffer capacity, the total error is kept low.  

 
Queuing scheme Loss Rate 

(%) 
Average delay 

(ms) 
FIFO 2.537 158 
RED 3.096 142 

SED 140-180 2.774 142 
 

Table 10. Packet loss and average end-to-end delay. 

 

Figure 21 presents the frequency of packet losses for the three queuing schemes. 

The SED algorithm provides much better performance in terms of spreading the error. 
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Considering the total error for the three algorithms (see Table 10), the RED and FIFO 

schemes cannot decrease the burst errors due to buffer overflow. From Figure 19, when 

the queue length is between the Θmin and Θmax thresholds, RED spreads the error more 

than FIFO due to the random drops. 

Figure 22 shows the distribution of the consecutive packet losses.  Clearly, 

consecutive packet losses are predominant for FIFO and RED (approximately 65% of the 

total losses) while SED has only 17% consecutive packet losses. Taking into 

consideration that voice degradation comes mainly from consecutive packet losses and/or 

losses in intervals of 2-4 packets, it is clear that SED provides better performance 

compared to FIFO and RED by spreading the error.  
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Figure 21. Frequency of packet loss in terms of packet intervals for the first 20 

intervals. In each interval the first (left) bar corresponds to FIFO, the second to RED and 
the third to SED (140, 180). Plots are obtained by averaging results from five 

connections. 
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Figure 22. Distribution of consecutive packet losses for SED, RED and FIFO.  

 

D. SED IN A MANET ENVIRONMENT 

This section aims to provide results for a real MANET environment with 10 

nodes moving within a limited area. Two different area sizes are considered: 10×10 km2 

and 30×30 km2. For the case of 10×10 km2, medium traffic load with packet losses of 

approximately 1% and heavy traffic load with losses of approximately 3% are examined. 

As FIFO is found to perform better than RED for real-time traffic in all scenarios we 

tested, hereafter performance comparison is presented between SED and FIFO only.  

 

1. Small Area, Medium Traffic Scenario 

Ten nodes and six connections, each one with a source rate of 240 kbps, are 

simulated. The buffer size is 160 packets, and the SED thresholds are set to (140, 180). 

Results obtained by averaging two independent simulations for each mobility pattern 

(pause time), each 13,000-sec long. The average number of packets sent in each 

simulation run is approximately 770,000 packets per source. 
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The packet loss, average end-to-end delay and throughput are shown in Figures 

23, 24 and 25, respectively. Packet loss for SED is within the range of 0.6% to 1.25% 

while for FIFO it is 0.65% to 1.54 %.  
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Figure 23. Average packet loss for FIFO and SED (120, 140) for a small area, 

medium traffic scenario. 
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Figure 24. Average end-to-end delay for FIFO and SED (120, 140) for a small area, 

medium traffic scenario. 
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Figure 25. Average throughput for FIFO and SED (120, 140) for a small area, 
medium traffic scenario. 

 

Packet loss for SED is better than that for FIFO because in FIFO the buffers are 

more fully occupied; therefore, the effects of exposed and hidden node problems are 

more severe than in the case of SED. The average end-to-end delay is slightly lower for 

SED (150 to 200 ms) in all mobility scenarios. Also, SED provides higher throughput 

than FIFO. 

The frequency of packet losses is presented in Figure 26 and the distribution of 

consecutive packet losses in Figure 27. From these figures, when the packet loss is small, 

SED almost eliminates both the burst errors and the errors in the intervals of 2-3 packets. 

In FIFO, burst errors of more than 30 consecutive packets occur while in SED 

consecutive packet losses are almost eliminated. This large number of consecutive packet 

losses using FIFO necessitates QoS guarantees in MANETs using a scheme like SED. 

Considering that the total error in SED is also lower than in FIFO, SED is a better choice 

for real-time traffic in MANETs. 
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Figure 26. Frequency of packet loss distribution in terms of packet intervals for the 
first 20 intervals. In each interval the first (left) bar corresponds to FIFO and the second 

to SED (120, 140) for a small area, medium traffic scenario. 
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Figure 27. Distribution of consecutive packet losses for FIFO and SED (120, 140) for 

a small area, medium traffic scenario. 

 

64 



2. Small Area, Heavy Traffic Scenario 

Here we consider a geography of 10×10 km2, 10 nodes and a data rate of 280 

kbps per source. The purpose is to investigate the performance of SED in spreading 

errors under heavy traffic. Plots of the results are obtained by averaging results from 

three independent simulation runs. Each of the simulation runs is 4,000-sec long, 

resulting in generation of 280,000 packets per source per simulation run.  

Figures 28 and 29 show the packet loss and average delay, respectively. Results 

generally are similar to those in the previous section. SED provides less error compared 

to FIFO and has a slightly lower average end-to-end delay. Numerically, both errors and 

average end-to-end delay are higher in this scenario due to increased congestion in the 

buffer. Although not shown here, the trends in frequency of packet loss and distribution 

of consecutive loss plots are similar to those of the small size, medium traffic scenario.  
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Figure 28. Average packet loss for FIFO and SED (120, 140) for a small area, heavy 

traffic scenario. 
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Figure 29. Average end-to-end delay for FIFO and SED (120, 140) for a small area, 

heavy traffic scenario. 

 

3. Large Area 

We now consider 10 nodes in an area of 30×30 km2 instead of 10×10 km2 and six 

active connections with each source transmitting at a rate of 240 kbps. The maximum 

buffer size is 160 packets, SED’s thresholds are (120, 140), and the dropping parameters 

are 20,10 and 5. Three independent simulations are run for each mobility scenario, each 

4,000-sec long; approximately 239,000 packets per source per simulation are generated. 

Figures 30 and 31 present the packet loss and average delay. For both metrics, 

results are worse compared to the small area scenario for SED and FIFO. Packet loss is 

higher due to the fact that in a large area, nodes can be isolated and unable to maintain 

routes with other nodes because of their limited maximum transmission range. Average 

end-to-end delay is larger because the average number of intermediate nodes from the 

source to the destination is larger. Specifically, packets often travel two or three hops in 

order to reach the destination. In contrast, in a small area scenario, the destination is 

mostly one hop away; in the worst-case, two hops away. Furthermore, in this scenario, 

SED and FIFO provide generally the same average error and end-to-end delay. 
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Figure 30. Average packet loss for FIFO and SED (120, 140) for a large area, 

medium traffic scenario. 
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Figure 31. Average end-to-end delay for FIFO and SED (120,140) for a large area, 

medium traffic scenario. 
 

The frequency of packet losses is shown in Figure 32.  The FIFO scheme has 70% 

of the total packet losses in intervals of at least two consecutive packets while SED has 
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only 8%. In the small area size scenario the corresponding percentages were measured to 

be 60% and 1% for FIFO and SED, respectively. The majority of the additional packet 

losses in the large area scenario are due to route losses. For example, when a node does 

not have any other node within its communication range and has packets to send, the 

node cannot send these packets and arriving packets may find the node buffer filled, 

leading to consecutive packet drops.  
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Figure 32. Frequency of packet loss distribution in terms of packets intervals for the 
first 20 intervals. In each interval the first (left) bar corresponds to FIFO and the second 

to SED (120, 140) for a large area, medium traffic scenario. 

 

E. SED/IO IN A MANET ENVIRONMENT 

This section investigates the proposed SED/IO algorithm in a MANET scenario 

and compares its performance with that of FIFO. Simulations were run for two different 

area sizes, 10×10 km2 and 30×30 km2. In each simulation scenario, an equal number of 

high and low priority sources generate an equal amount of traffic. The third threshold for 

the high priority packets is the maximum buffer capacity.  
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1. Small Area, Medium Traffic Scenario 

The traffic differentiation in SED/IO is achieved by setting the threshold values of 

the high priority packets (IN packets) to be larger than the corresponding values of the 

low priority packets (OUT packets). Also, by choosing larger values for selective 

dropping (SD) parameters for the IN packets, these packets are dropped less frequently. 

In our simulations the threshold values for the IN packets are (120, 140, 160) and (60, 80, 

100) for the OUT packets. The SD parameters are 20, 10 and 5 for the IN packets and 16, 

8 and 4 for the OUT packets. The number of connections is six and the rate of each 

source is 260 kbps. The maximum buffer size is 160 packets. Results represent the 

average of two independent simulations for each mobility scenario; each run is 12,000-

sec long, which results in a total number of packets sent of approximately 775,000 per 

source.  

Figure 33 depicts the packet losses for SED/IO and FIFO. Clearly, SED/IO 

provides traffic differentiation. The error for the high priority packets is within 0.25-0.6% 

for the SED/IO algorithm. On the other hand, error rates for FIFO are 2-4 % for both 

types of traffic. Strictly speaking, the packet loss and delay curves for FIFO high and low 

priority traffic must not be different. We remark that by averaging these results over a 

large number of simulations, the curves may indeed converge. Due to computational 

resource limitation, we were not able to obtain more than three runs in this work. This 

limitation will have to be addressed in a future effort. However, the SED error rate for the 

high priority packets is relatively stable for all mobility scenarios. This means that the 

problems that are attributed to 802.11 do not cause performance degradation in the 

protected traffic but rather are absorbed by the low priority packets.  

The average end-to-end delay is shown in Figure 34. The SED/IO scheme 

provides significantly lower delay compared to FIFO for both high and low priority 

traffic. The average delay for the IN packets in SED/IO is 30 to 40 ms higher than the 

average delay of the OUT packets. This additional delay for IN packets is the result of 

holding the IN packets longer in the queue than OUT packets. Specifically, OUT packets 

are dropped earlier and more frequently, which reduces the delay. Compared to FIFO, the 

average delay also is relatively stable for both types of traffic for SED/IO.  
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Figure 33. Average packet loss for FIFO and SED/IO for a small area, medium traffic 

scenario. 
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Figure 34. Average end-to-end delay for FIFO and SED/IO for a small area, medium 

traffic scenario. 
 

Figure 35 provides the frequency of packet losses for both the IN and OUT 

packets. Results show that SED/IO spreads the error for both high and low priority 
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traffic. For SED/IO low priority traffic, the portion of consecutive packet losses is 

negligible. Overall, SED/IO provides preferential treatment to high priority traffic (or IN 

packets). 
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Figure 35. Frequency of packet loss distribution in terms of packets intervals for the 
first 20 intervals. In each interval the first (left) bar corresponds to FIFO and the second 

to SED/IO for a small area, medium traffic scenario. 

 

2. Small Area, Heavy Traffic Scenario 

Continuing with the scenario in the previous subsection, we now increase the data 

rate of each source to 300 kbps from 260 kbps. Consequently, we are introducing an 

additional total traffic of 6×40 = 240 kbps into the network. The thresholds of the OUT 

packets are changed to (60, 70, 80) from (60, 80, 100) while for the IN packets they 

remain the same (120, 140, 160). The reason for decreasing the thresholds for OUT 

packets is to provide protection for the IN packets. Plots are based upon averaging results 

from three independent simulations for each mobility scenario.  

Figures 36 and 37 present the packet loss and average end-to-end delay, 

respectively. Results of packet loss show that the SED/IO algorithm is able to protect the 

high priority packets under heavy traffic. Compared to the medium traffic scenario, 
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results indicate that FIFO’s performance becomes worse as traffic increases. Results for 

delay are very similar to those in the medium traffic case except for a net increase in the 

values. 
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Figure 36. Average packet loss for FIFO and SED/IO for a small area, heavy traffic 

scenario. 
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Figure 37. Average end-to-end delay for FIFO and SED/IO for a small area, heavy 

traffic scenario. 
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F. SED AND SED/RIO WITH TIMESTAMPS IN A MANET 
ENVIRONMENT 

 

1. SED with Timestamps 

The performance of the SED algorithm with timestamps is compared with that of 

SED without timestamps and FIFO in this section. SED with timestamps has the 

advantage of dropping packets that might be too late at the receiver, thus improving its 

performance over that of SED. However, SED with timestamps requires routers to read 

the RTP header, which makes this scheme more complex than the simple SED. The 

objective of the simulations in this section is to demonstrate the improvement in 

performance achieved by SED with timestamps as a QoS scheme. 

An area of 10×10 km2, ten nodes, and six sources generating traffic at a rate of 

260 kbps are used. The maximum buffer capacity is 200 while the thresholds are (140, 

180, 200) and the selective parameters are 20, 10 and 5 for both SED algorithms. Three 

independent simulations were run for each mobility scenarios, each 4,000-sec long.  

Figures 38 and 39 depict the packet loss and average end-to-end delay for the 

three QoS schemes. SED with timestamps provides the lowest error rate and end-to-end 

delay. Low errors occur because delayed packets are dropped early. The average delay is 

low because when the queue size exceeds the dropping thresholds, SED with timestamps 

drops packets that have been in the network longer than others and are likely to be 

unusable at the receiver.  

 

2. SED/IO with Timestamps 

This section provides simulation results for SED/IO with and without timestamps. 

A geographical area of 10×10 km2, ten nodes, six sources sending at a rate of 280 kbps 

and a maximum buffer capacity of 200 packets are used. Threshold values for the IN and 

OUT packets are (140, 180, 200) and (100, 120, 140), respectively. Results represent 

averages from three independent simulations for each mobility scenario, each 4,000-sec 

long. 
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Figure 38. Average packet loss for SED with timestamps, SED without timestamps 

and FIFO for a small area. 
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Figure 39. Average end-to-end delay for SED with timestamps, SED without 

timestamps and FIFO for a small area. 
 

Figures 40 and 41 show the packet loss and average end-to-end delay for each 

type of traffic for all schemes. SED/IO with timestamps performs better than SED 

without timestamps in both types of traffic. The IN packets have approximately 0.02% 

less error while the average delay is decreased by more than 60 ms compared to SED/IO 
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without timestamps. For the OUT packets, the improvement in packet losses in SED/IO 

using timestamps is smaller and the improvement in average delay is approximately 35 

ms. Consequently, SED/IO using timestamps provides significant performance benefits 

and these advantages are greater for the high priority packets.  
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Figure 40. Average packet loss for SED/IO with and without timestamps. 
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Figure 41. Average end-to-end delay for SED/IO with and without timestamps. 
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F. BIT DROPPING SCHEME IN A MANET ENVIRONMENT 

Results on bit-dropping have shown that significant bandwidth savings are 

possible by dropping bits from each CELP encoded voice packet. In particular, by losing 

24 bits of each FS1016 voice frame, voice quality degradation is tolerable. As a result, 

during periods of congestion in the buffer, bits can be dropped to reduce congestion.  

The purpose of the simulations in this section is to show the benefits of bit-

dropping schemes. Simulations were run for both SED and the proposed bit-dropping 

scheme. Note that the bit-dropping scheme is not actually implemented but rather is 

approximated. Specifically, packets are dropped instead of bits but these packets 

correspond to the total number of bits dropped if the proposed scheme were implemented. 

The simulation parameters are the same as in the SED heavy traffic scenario. It 

includes a small area of 10×10 km2, ten nodes and six sources that generate data at 280 

kbps. The maximum buffer capacity is 160 packets and a threshold Θ = 120 is set for 

dropping the bits. It is assumed that when a packet arrives and the queue size exceeds this 

threshold, 24 bits are dropped from six packets. Thus, the total number of bits dropped 

when an arriving packet finds the queue size to be above the threshold is 24×6 = 144 bits, 

which correspond to a whole FS1016 frame, and it allows the approximation of dropping 

these bits by discarding a packet. Although this simulation configuration does not exactly 

represent the proposed bit-dropping scheme, the objective of demonstrating the benefits 

of bit-dropping schemes is accomplished. Three 4,000-sec long independent simulations 

were run to obtain results. The average number of packets sent by each source per 

simulation run is 259,000, and the number of mobility scenarios is six as in the previous 

sections. 

Packet loss for SED is 3 to 4% as in the simulations for the SED heavy traffic 

scenario of Chapter VI Section D.2 (Figure 28). In contrast, in all simulations, packet loss 

for the bit-dropping scheme is below 10-3 or, in other words, one packet out of 1,000 is 

lost at a maximum. The reader is cautioned that these are preliminary results and more 

rigorous simulations are required to draw final conclusions.  

76 

Figure 42 depicts the average end-to-end delay for SED and bit dropping QoS 

schemes. The bit-dropping scheme provides significantly lower delay (approximately 50 



ms in average) compared to SED. This is because dropping bits smoothes the burstiness 

of traffic, thus speeding up the packet service time during periods of congestion in the 

queue. 
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Figure 42. Average end-to-end delay for bit-dropping and SED QoS schemes. 

 

H. SUMMARY 

Several simulations were run for the evaluation of SED, the proposed packet 

dropping algorithm. SED’s performance in terms of packet loss, end-to-end delay, and 

distribution of packet losses was compared with that of FIFO and RED QoS schemes. 

Additionally, SED’s extensions, SED/IO and SED with timestamps, were evaluated using 

extensive simulations. Results indicate that both SED and its extensions provide 

significant performance benefits for real-time traffic. Finally, preliminary results for bit-

dropping indicate that performance can be further improved by spreading the error at the 

bit level. 
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     VII. CONCLUSIONS 

A. DISCUSSION OF RESULTS 

In this thesis, new active queue management schemes using packet and bit 

dropping techniques were investigated. The main objective was the development of new 

QoS schemes that improve the performance and provide service differentiation for real-

time traffic in MANETs. 

The proposed packet dropping technique, called the Selective Early Discard 

(SED) algorithm, was found to be effective in improving the packet loss and delay 

performance for real-time traffic. The SED algorithm selectively drops packets according 

to a specific pattern using three selective dropping parameters and three thresholds in 

order to spread the error as much as possible. The minimum threshold is used mainly for 

the control of the queuing delay by dropping packets early. On the other hand, the 

maximum threshold is used to drop packets when necessary just before the buffer 

overflow occurs in order to spread the error. A parameter sensitivity study was performed 

to experimentally determine the thresholds and examine the trade offs involved. Using 

extensive simulations, the performance of the SED algorithm was studied and compared 

with that of the Random Early Discard (RED) and First In First Out (FIFO) queuing 

schemes. The performance metrics of interest were packet loss, end-to-end delay, and 

frequency and distribution of packet losses. 

The SED algorithm, compared to the RED and FIFO schemes, provides better 

performance by reducing burst errors. Specifically, it was found that SED minimizes the 

burst errors due to buffer overflow, adds only a small amount to the total error by 

dropping packets early, and decreases the average delay. In the simulation experiments 

with voice packets using the FS1016 CELP coder, results indicated a significant 

degradation in voice quality if more than 1 packet is lost in a sequence of five packets. 

Simulation results showed that the SED algorithm minimizes, as much as possible, the 

occurrence of 2 or more packet losses in a sequence of five packets. Furthermore, in the 

MANET simulation scenarios, SED keeps all the above-mentioned benefits while also 

giving lower average error compared to FIFO. A possible reason is that by dropping 
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packets early, the SED algorithm smoothes the hidden and exposed node problems of the 

802.11 MAC protocol.  

The SED algorithm was extended in order to provide service differentiation. This 

scheme is called SED/IO (SED with IN and OUT traffic classes) and utilizes two 

independent SED algorithms, one for each traffic class. Results indicate that SED/IO is 

able to provide service differentiation by using different selective dropping parameters 

for the two classes of packets. 

Another variation of SED utilizes the timestamp field in the RTP header. The 

purpose is for the intermediate node to drop packets that might be unusable at the 

destination due to excessive delay. Simulations show that this scheme not only decreases 

the average end-to-end delay but also provides lower error compared to SED and FIFO.  

Finally, a bit-dropping technique was proposed as another possible QoS scheme 

that aims to spread errors at the bit level (rather than spreading the error at the packet 

level as in SED). This scheme is more complex than SED and requires access to payload 

of the packet in the intermediate nodes. Simulations showed that by dropping 24 bits of 

each FS1016 frame, the degradation in voice is acceptable. Preliminary simulations 

indicated that significant bandwidth and performance advantages can be gained as a 

result of dropping bits.  

 

B. SUGGESTIONS FOR FUTURE WORK 

Although the simulation results in this thesis are based on voice traffic, the SED 

algorithm can be extended to other types of real-time traffic in which a certain amount of 

tolerance in terms of packet losses is permissible. In this connection, it will be an 

interesting effort to investigate the improvement in performance possible for real-time 

video traffic and determine general guidelines in dropping packets according to specific 

characteristics.  

In this thesis, the main effort was put into the development of efficient active 

queue management QoS schemes for real-time traffic only. Nevertheless, in both 

MANETs and wired networks, a large amount of non-real-time traffic, such as e-mail and 
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ftp, exists. A future study may consider the mixed traffic scenario and apply SED or its 

variants to the real-time traffic and an equivalent algorithm to manage the non-real-time 

traffic.  

The bit-dropping algorithm presented in the thesis needs to be further studied. In 

its current form, the algorithm requires access to payload in the packet, which makes the 

implementation in an intermediate node quite complex. Ways to simplify it by 

embedding the packets at the source with predefined congestion states are to be explored. 

The guidelines for selective drop parameters and thresholds need to be developed.  

In this thesis, the packet and bit dropping studies examined only buffer losses 

with respect to voice quality. However, the wireless environment introduces additional 

impairments, such as bit errors that lead to route losses and header corruption. These 

issues along with a more in-depth study of MAC layer constraints are of considerable 

interest. 

The SED algorithm could be implemented in future networks in association with 

the error concealment schemes for real-time traffic [35]. In these techniques, the missing 

packets are recovered by processing previous packets; as a result, having an algorithm 

like SED to eliminate burst errors is a necessity.  
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APPENDIX A – SED AND SED/RIO C++ CODE FILES 

The following C++ code is used in creating MANET simulations for SED and its 

variants and RED algorithm in NS2. Main modifications and additions by the author are 

highlighted in bold font. 

 
/* -*-  Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */ 
/* 
 * Copyright (c) 1990-1997 Regents of the University of California. 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in the 
 *    documentation and/or other materials provided with the distribution. 
 * 3. All advertising materials mentioning features or use of this software 
 *    must display the following acknowledgement: 
 *  This product includes software developed by the Computer Systems 
 *  Engineering Group at Lawrence Berkeley Laboratory. 
 * 4. Neither the name of the University nor of the Laboratory may be used 
 *    to endorse or promote products derived from this software without 
 *    specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
 * SUCH DAMAGE. 
 * 
 * 
 * Here is one set of parameters from one of my simulations: 
 * 
 * ed [ q_weight=0.002 thresh=5 linterm=30 maxthresh=15 
 *         mean_pktsize=500 dropmech=random-drop queue-size=60 
 *         plot-file=none bytes=false doubleq=false dqthresh=50 
 *     wait=true ] 
 * 
 * 1/"linterm" is the max probability of dropping a packet. 
 * There are different options that make the code 
 * more messy that it would otherwise be.  For example, 
 * "doubleq" and "dqthresh" are for a queue that gives priority to 
 *   small (control) packets, 
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 * "bytes" indicates whether the queue should be measured in bytes 
 *   or in packets, 
 * "dropmech" indicates whether the drop function should be random-drop 
 *   or drop-tail when/if the queue overflows, and 
 *   the commented-out Holt-Winters method for computing the average queue 
 *   size can be ignored. 
 * "wait" indicates whether the gateway should wait between dropping 
 *   packets. 
 * 
 * @(#) $Header: /usr/src/mash/repository/vint/ns-2/rio.h,v 1.14 1998/06/27 01:24:29 gnguyen 

Exp $ (LBL) 
 */ 
 
#ifndef hannan_debug 
#define hannan_debug 
#endif 
 
#ifndef ns_rio_h 
#define ns_rio_h 
 
//#define ACKOUT  /* this is used to switch whether mark ACK as IN or OUT */ 
#define ACKOUT 
 
#ifndef INOUT 
#define INOUT 
 
/* ACK are markded as IN */ 
#ifdef ACKIN 
#define IN 0  
#define OUT 1 
#endif 
 
/* ACK are markded as OUT */ 
#ifdef ACKOUT 
#define IN  1 
#define OUT 0 
#endif 
#endif 
 
#include "../queue.h" 
#include "../red.h" 
 
class LinkDelay; 
 
class RIOQueue : public Queue { 
 public: 
    RIOQueue(); 
    void enque(Packet* pkt); 
    Packet* deque(); 
 protected: 
    int command(int argc, const char*const* argv); 
    int decide_droptype(Packet* pkt, edp* edp_, edv* edv_);  /* hannan, decide the drop type of the 

packet */ 
    virtual Packet *pickPacketForECN(Packet* pkt); 
    virtual Packet *pickPacketToDrop(); 
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    void reset(); 
    void run_estimator(int nqueued, int m, edp* edp_, edv* edv_); 
    int drop_early(Packet* pkt, edp* edp_, edv* edv_); 
 
    LinkDelay* link_;   /* outgoing link */ 
    int fifo_;      /* fifo queue? */ 
    PacketQueue *q_;    /* underlying (usually) FIFO queue */ 
 
    int bcount_;    /* byte count */ 
    int qib_;   /* bool: queue measured in bytes? */ 
    NsObject* de_drop_; /* drop_early target */ 
     
    Tcl_Channel tchan_; /* place to write trace records */ 
    TracedInt curq_;    /* current qlen seen by arrivals */ 
    void trace(TracedVar*); /* routine to write trace records */ 
 
    /* 
     * Static state. 
     */ 
    int drop_tail_;     /* drop-tail */ 
    int drop_front_;    /* drop-from-front */ 
    int drop_rand_;     /* drop-tail, or drop random? */ 
 
    edp INedp_;   /* hannan RED params of IN packets */ 
    edp OUTedp_;  /* hannan RED params of OUT packets */ 
 
    /* 
     * Dynamic state. 
     */ 
    int idle_;      /* queue is idle? */ 
    double idletime_;   /* if so, since this time */ 
    edv INedv_;       /* hannan early-drop variables of IN packets*/ 
    edv OUTedv_;     /* hannan early-drop variables of OUT packets*/ 
    int INnum_;     /* hannan # of IN packets in the queue */ 
    TracedInt tag_;       /* hannan to trace the tag of packet IN/OUT */ 
 
    void print_edp(edp* edp_);   // for debugging 
    void print_edv(edv* edv_);   // for debugging 
}; 
 
#endif 
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/* -*-  Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */ 
/* 
 * Copyright (c) 1990-1997 Regents of the University of California. 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in the 
 *    documentation and/or other materials provided with the distribution. 
 * 3. All advertising materials mentioning features or use of this software 
 *    must display the following acknowledgement: 
 *  This product includes software developed by the Computer Systems 
 *  Engineering Group at Lawrence Berkeley Laboratory. 
 * 4. Neither the name of the University nor of the Laboratory may be used 
 *    to endorse or promote products derived from this software without 
 *    specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
 * SUCH DAMAGE. 
 * 
 * 
 * Here is one set of parameters from one of Sally's simulations 
 * (this is from tcpsim, the older simulator): 
 * 
 * ed [ q_weight=0.002 thresh=5 linterm=30 maxthresh=15 
 *         mean_pktsize=500 dropmech=random-drop queue-size=60 
 *         plot-file=none bytes=false doubleq=false dqthresh=50 
 *     wait=true ] 
 * 
 * 1/"linterm" is the max probability of dropping a packet. 
 * There are different options that make the code 
 * more messy that it would otherwise be.  For example, 
 * "doubleq" and "dqthresh" are for a queue that gives priority to 
 *   small (control) packets, 
 * "bytes" indicates whether the queue should be measured in bytes 
 *   or in packets, 
 * "dropmech" indicates whether the drop function should be random-drop 
 *   or drop-tail when/if the queue overflows, and 
 *   the commented-out Holt-Winters method for computing the average queue 
 *   size can be ignored. 
 * "wait" indicates whether the gateway should wait between dropping 
 *   packets. 
 */ 
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#ifndef lint 
static const char rcsid[] = 
    "@(#) $Header: /usr/src/mash/repository/vint/ns-2/fqmm/rio.cc,v 1.34 1999/01/07 19:01:57 

sfloyd Exp $ (LBL)"; 
#endif 
 
#define hannan_debug 
 
#include <math.h> 
#include <string.h> 
#include <sys/types.h> 
#include "../template.h" 
#include "../random.h" 
#include "../flags.h" 
#include "../delay.h" 
#include "../ip.h" 
#include "rio.h" 
#include "../rtp.h" //in order RTP header to be read 
#include <iostream.h> 
 
 
static class RIOClass : public TclClass { 
public: 
    RIOClass() : TclClass("Queue/RIO") {} 
    TclObject* create(int, const char*const*) { 
        return (new RIOQueue); 
    } 
} class_rio; 
 
RIOQueue::RIOQueue() : link_(NULL), bcount_(0), de_drop_(NULL), 
    tchan_(0), idle_(1) 
{ 
    bind_bool("bytes_", &INedp_.bytes);       // boolean: use bytes? 
    OUTedp_.bytes = INedp_.bytes; 
    bind_bool("queue-in-bytes_", &qib_);        // boolean: q in bytes? 
 
    // set parameters for IN packets 
    bind("in_minthresh_", &INedp_.th_min);          // minthresh 
    bind("in_maxthresh_", &INedp_.th_max);       // maxthresh 
    bind("in_q_weight_", &INedp_.q_w);           // for EWMA 
    bind("in_linterm_", &INedp_.max_p_inv);      // inverse of the max drop prob. 
 
    // set parameters for OUT packets 
    bind("out_minthresh_", &OUTedp_.th_min);          // minthresh 
    bind("out_maxthresh_", &OUTedp_.th_max);       // maxthresh 
    bind("out_q_weight_", &OUTedp_.q_w);           // for EWMA 
    bind("out_linterm_", &OUTedp_.max_p_inv);      // inverse of the max drop prob. 
 
    bind("mean_pktsize_", &INedp_.mean_pktsize);  // avg pkt size 
    OUTedp_.mean_pktsize = INedp_.mean_pktsize; 
    bind_bool("wait_", &INedp_.wait); 
    OUTedp_.wait = INedp_.wait; 
    bind_bool("setbit_", &INedp_.setbit);     // mark instead of drop 
    OUTedp_.setbit = INedp_.setbit; 
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    bind_bool("drop-tail_", &drop_tail_);       // drop last pkt 
    bind_bool("drop-front_", &drop_front_);     // drop first pkt 
    bind_bool("drop-rand_", &drop_rand_);       // drop pkt at random 
 
    bind("in_ave_", &INedv_.v_ave); // hannan average queue size of IN pkt 
    bind("out_ave_", &OUTedv_.v_ave); // hannan average queue size of OUT pkt 
    bind("in_prob1_", &INedv_.v_prob1);  //hannan dropping prob. of IN pkt 
    bind("out_prob1_", &OUTedv_.v_prob1);  //hannan dropping prob. of OUT pkt 
 
    bind("curq_", &curq_);    // current queue size 
    bind("tag_", &tag_);      // tag of the packet 
    q_ = new PacketQueue();             // underlying queue 
    pq_ = q_; 
    reset(); 
 
#ifdef notdef 
print_edp(&INedp_); 
print_edv(&INedv_); 
print_edp(&OUTedp_); 
print_edv(&OUTedv_); 
#endif 
 
} 
 
void RIOQueue::reset() 
{ 
    /* 
     * If queue is measured in bytes, scale min/max thresh 
     * by the size of an average packet (which is specified by user). 
     */ 
 
    if (qib_) { 
        INedp_.th_min *= INedp_.mean_pktsize; 
        INedp_.th_max *= INedp_.mean_pktsize; 
        OUTedp_.th_min *= OUTedp_.mean_pktsize; 
        OUTedp_.th_max *= OUTedp_.mean_pktsize; 
    } 
 
    /* 
     * Compute the "packet time constant" if we know the 
     * link bandwidth.  The ptc is the max number of (avg sized) 
     * pkts per second which can be placed on the link. 
     * The link bw is given in bits/sec, so scale mean psize 
     * accordingly. 
     */ 
 
    if (link_) { 
        INedp_.ptc = link_->bandwidth() / 
            (8. * INedp_.mean_pktsize); 
        OUTedp_.ptc = INedp_.ptc; 
    } 
    INedv_.v_ave = 0.0; 
    INedv_.v_slope = 0.0; 
    INedv_.count = 0; 
    INedv_.count_bytes = 0; 
    INedv_.old = 0; 
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    INedv_.v_a = 1 / (INedp_.th_max - INedp_.th_min); 
    INedv_.v_b = - INedp_.th_min / (INedp_.th_max - INedp_.th_min); 
 
    OUTedv_.v_ave = 0.0; 
    OUTedv_.v_slope = 0.0; 
    OUTedv_.count = 0; 
    OUTedv_.count_bytes = 0; 
    OUTedv_.old = 0; 
    OUTedv_.v_a = 1 / (OUTedp_.th_max - OUTedp_.th_min); 
    OUTedv_.v_b = - OUTedp_.th_min / (OUTedp_.th_max - OUTedp_.th_min); 
 
    idle_ = 1; 
    if (&Scheduler::instance() != NULL) 
        idletime_ = Scheduler::instance().clock(); 
    else 
        idletime_ = 0.0; /* sched not instantiated yet */ 
    Queue::reset(); 
 
    bcount_ = 0; 
    INnum_ = 0; 
} 
 
/* 
 * Compute the average queue size. 
 * The code contains two alternate methods for this, the plain EWMA 
 * and the Holt-Winters method. 
 * nqueued can be bytes or packets 
 * We add two incoming parameters to the method 
 */ 
void RIOQueue::run_estimator(int nqueued, int m, edp* edp_, edv* edv_) 
{ 
    float f, f_sl, f_old; 
 
    f = edv_->v_ave; 
    f_sl = edv_->v_slope; 
#define RED_EWMA 
#ifdef RED_EWMA 
    while (--m >= 1) { 
        f_old = f; 
        f *= 1.0 - edp_->q_w; 
    } 
    f_old = f; 
    f *= 1.0 - edp_->q_w; 
    f += edp_->q_w * nqueued; 
#endif 
#ifdef RED_HOLT_WINTERS 
    while (--m >= 1) { 
        f_old = f; 
        f += f_sl; 
        f *= 1.0 - edp_->q_w; 
        f_sl *= 1.0 - 0.5 * edp_->q_w; 
        f_sl += 0.5 * edp_->q_w * (f - f_old); 
    } 
    f_old = f; 
    f += f_sl; 
    f *= 1.0 - edp_->q_w; 
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    f += edp_->q_w * nqueued; 
    f_sl *= 1.0 - 0.5 * edp_->q_w; 
    f_sl += 0.5 * edp_->q_w * (f - f_old); 
#endif 
    edv_->v_ave = f; 
    edv_->v_slope = f_sl; 
} 
 
/* 
 * Return the next packet in the queue for transmission. 
 */ 
Packet* RIOQueue::deque() 
{ 
    Packet *p; 
    p = q_->deque(); 
    if (p != 0) { 
        idle_ = 0; 
        bcount_ -= ((hdr_cmn*)p->access(off_cmn_))->size(); 
        /* 
         * if is IN packet, decrease the INnum_ 
         */ 
         hdr_ip* iph=hdr_ip::access(p); 
         if (iph->prio_ == IN) INnum_--; 
// quite strange, that sometimes, deque was called before enque, and packetqueue is not empty 
// I just let INnum = 0, if it is negative 
  if (INnum_ <0) INnum_ =0; 
    } else { 
        idle_ = 1; 
        // deque() may invoked by Queue::reset at init 
        // time (before the scheduler is instantiated). 
        // deal with this case 
        if (&Scheduler::instance() != NULL) 
            idletime_ = Scheduler::instance().clock(); 
        else 
            idletime_ = 0.0; 
    } 
    return (p); 
} 
 
/* 
 * should the packet be dropped/marked due to a probabilistic drop? 
 */ 
 
int 
RIOQueue::drop_early(Packet* pkt, edp* edp_, edv* edv_) 
{ 
    hdr_cmn* ch = (hdr_cmn*)pkt->access(off_cmn_); 
 
    double p = edv_->v_a * edv_->v_ave + edv_->v_b; 
    p /= edp_->max_p_inv; 
    edv_->v_prob1 = p; 
    if (edv_->v_prob1 > 1.0) 
        edv_->v_prob1 = 1.0; 
    double count1 = edv_->count; 
    if (edp_->bytes) 
        count1 = (double) (edv_->count_bytes/edp_->mean_pktsize); 
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    if (edp_->wait) { 
        if (count1 * p < 1.0) 
            p = 0.0; 
        else if (count1 * p < 2.0) 
            p /= (2 - count1 * p); 
        else 
            p = 1.0; 
    } else { 
        if (count1 * p < 1.0) 
            p /= (1.0 - count1 * p); 
        else 
            p = 1.0; 
    } 
    if (edp_->bytes && p < 1.0) { 
        p = p * ch->size() / edp_->mean_pktsize; 
    } 
    if (p > 1.0) 
        p = 1.0; 
    edv_->v_prob = p; 
 
    // drop probability is computed, pick random number and act 
    double u = Random::uniform(); 
    if (u <= edv_->v_prob) { 
        // DROP or MARK 
        edv_->count = 0; 
        edv_->count_bytes = 0; 
        hdr_flags* hf = (hdr_flags*)pickPacketForECN(pkt)->access(off_flags_); 
        if (edp_->setbit && hf->ect()) { 
            hf->ce() = 1;   // mark Congestion Experienced bit 
            return (1);     // 
        } else { 
            return (1); // drop 
        } 
    } 
    return (0);         // no DROP/mark 
} 
 
/* 
 * Pick packet for early congestion notification (ECN). This packet is then 
 * marked or dropped. Having a separate function do this is convenient for 
 * supporting derived classes that use the standard RIO algorithm to compute 
 * average queue size but use a different algorithm for choosing the packet for 
 * ECN notification. 
 */ 
Packet* 
RIOQueue::pickPacketForECN(Packet* pkt) 
{ 
    return pkt; /* pick the packet that just arrived */ 
} 
 
/* 
 * Pick packet to drop. Having a separate function do this is convenient for 
 * supporting derived classes that use the standard RIO algorithm to compute 
 * average queue size but use a different algorithm for choosing the victim. 
 */ 
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/* we should assure that the packet picked is the of the same class as that 
of arrival, IN packet will induce dropping of IN packets, and OUT packet 
will induce dropping of OUT packets */ 
/* we use the default the incoming packet itself, so assure this point */ 
 
Packet* 
RIOQueue::pickPacketToDrop() 
{ 
int vic; 
    int victim; 
 
    if (drop_front_) 
        victim = min(1, q_->length()-1); 
    else if (drop_rand_) 
        victim = Random::integer(q_->length()); 
    else            // default is drop_tail_  
        victim = q_->length() - 1; 
 
    return(q_->lookup(victim)); 
} 
 
 
/* 
 * Receive a new packet arriving at the queue. 
 * The average queue size is computed.  If the average size 
 * exceeds the threshold, then the dropping probability is computed, 
 * and the newly-arriving packet is dropped with that probability. 
 * The packet is also dropped if the maximum queue size is exceeded. 
 * 
 * "Forced" drops mean a packet arrived when the underlying queue was 
 * full or when the average q size exceeded maxthresh. 
 * "Unforced" means a RIO random drop. 
 * 
 * For forced drops, either the arriving packet is dropped or one in the 
 * queue is dropped, depending on the setting of drop_tail_. 
 * For unforced drops, the arriving packet is always the victim. 
 */ 
 
#define DTYPE_NONE  0   /* ok, no drop */ 
#define DTYPE_FORCED    1   /* a "forced" drop */ 
#define DTYPE_UNFORCED  2   /* an "unforced" (random) drop */ 
 
int RIOQueue::decide_droptype(Packet* pkt, edp* edp_, edv* edv_) 
{ 
    /* 
     * DROP LOGIC: 
     *  q = current q size, ~q = averaged q size 
     *  1> if ~q > maxthresh, this is a FORCED drop 
     *  2> if minthresh < ~q < maxthresh, this may be an UNFORCED drop 
     *  3> if (q+1) > hard q limit, this is a FORCED drop 
     */ 
    hdr_cmn* ch = (hdr_cmn*)pkt->access(off_cmn_); 
 
    register double qavg = edv_->v_ave; 
    int droptype = DTYPE_NONE; 
    int qlen = qib_ ? bcount_ : q_->length(); 
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    int qlim = qib_ ? (qlim_ * edp_->mean_pktsize) : qlim_; 
 
    curq_ = qlen;   // helps to trace queue during arrival, if enabled 
 
    if (qavg >= edp_->th_min && qlen > 1) { 
        if (qavg >= edp_->th_max) { 
            droptype = DTYPE_FORCED; 
        } else if (edv_->old == 0) { 
            /* 
             * The average queue size has just crossed the 
             * threshold from below to above "minthresh", or 
             * from above "minthresh" with an empty queue to 
             * above "minthresh" with a nonempty queue. 
             */ 
            edv_->count = 1; 
            edv_->count_bytes = ch->size(); 
            edv_->old = 1; 
        } else {    
            droptype = DTYPE_UNFORCED; 
        } 
    } else { 
        /* No packets are being dropped.  */ 
        edv_->v_prob = 0.0; 
        edv_->old = 0; 
    } 
    if (qlen >= qlim) { 
        // see if we've exceeded the queue size 
        droptype = DTYPE_FORCED; 
    } 
    return droptype; 
} 
 
 
void RIOQueue::enque(Packet* pkt) 
{ 
 
    /* 
     * if we were idle, we pretend that m OUT packets arrived during 
     * the idle period.  m is set to be the ptc times the amount 
     * of time we've been idle for 
     */ 
 
    int m = 0; 
    if (idle_) { 
        double now = Scheduler::instance().clock(); 
        /* To account for the period when the queue was empty. */ 
        idle_ = 0; 
        m = int(OUTedp_.ptc * (now - idletime_)); 
    } 
 
    /* get the DSCP field */ 
    hdr_ip* iph=hdr_ip::access(pkt); 
    /* 
     * Run the estimator with either 1 new packet arrival, or with 
     * the scaled version above [scaled by m due to idle time] 
     * (bcount_ maintains the byte count in the underlying queue). 
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     * If the underlying queue is able to delete packets without 
     * us knowing, then bcount_ will not be maintained properly! 
     */ 
#ifdef hannan_debug 
//printf("Tag = %d\n", iph->prio_); 
#endif 
    
    tag_ = iph->prio_; 
  
/* since OUT packets are based on the total queue length, so we update OUT average every time a 

packet comes in */ 
        run_estimator(qib_ ? bcount_ : q_->length(), m + 1, &OUTedp_, &OUTedv_); 
 
     if (iph->prio_ == IN)  
    /* extimate the average queue size based on the # of IN packetrs present in the queue */ 
         run_estimator(qib_ ? bcount_ : INnum_, 1, &INedp_, &INedv_); 
 /*   else if (iph->prio_ == OUT) 
*/ 
    /* estimate the average queue size based on the total # of OUT packets 
    present in the queue */ 
 /* 
       run_estimator(qib_ ? bcount_ : q_->length(), m + 1, &OUTedp_, &OUTedv_); 
*/ 
 
  /* 
     * count and count_bytes keeps a tally of arriving traffic 
     * that has not been dropped (i.e. how long, in terms of traffic, 
     * it has been since the last early drop) 
     */ 
    hdr_cmn* ch = (hdr_cmn*)pkt->access(off_cmn_); 
 
    if (iph->prio_ == IN) { 
        ++INedv_.count; 
        INedv_.count_bytes += ch->size(); 
    } 
    else if (iph->prio_ == OUT) { 
        ++OUTedv_.count; 
        OUTedv_.count_bytes += ch->size(); 
    } 
 
    /* decide drop type of the packet */ 
    int droptype = DTYPE_NONE; 
 
    if (iph->prio_ == IN) 
        droptype = decide_droptype(pkt, &INedp_, &INedv_); 
    else if (iph->prio_ == OUT) 
        droptype = decide_droptype(pkt, &OUTedp_, &OUTedv_); 
 
      /* forced drop, or not a drop: first enqueue pkt */ 
        q_->enque(pkt); 
        bcount_ += ch->size(); 
         
 // if is IN packet, increase the INnum_ 
                 
            if (iph->prio_ == IN) INnum_++; 
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    /* drop a packet if we were told to */ 
 
//Main part in the implementation of SED, SED/RIO and SED with timestamps 
 
int count1 = 1; 
int count2; 
int param = 0; 
 
double local_time; 
 
/get the local time 
 
local_time = Scheduler::instance().clock(); 
 
//this loop examines if a packet is delayed more than 400 ms (8000*0.400=3200) 
 
for (count2 = 1; count2 <= (q_->length()-1); count2++) { 
 if  ( ( (local_time*8000) - hdr_cmn::access(q_->lookup(count2))->timestamp() ) > 

3200  )  { 
  count1 = count2; 
 } 
} 
 
double InTh1_ = 120; 
double InTh2_ = 140; 
double InTh3_ = 160; 
 
double OutTh1_ = 50; 
double OutTh2_ = 70; 
double OutTh3_ = 80; 
 
if (count1 == 1) {   //examine if there is packet to drop, if no late pkt exists 
 
 if (iph->prio_ == IN) {   
  if ( (q_->length()-1) >= InTh1 && (q_->length()-1) < InTh2 ) { 
 
   for (count2 = (q_->length()-1); count2 >= 1; count2--) { 
    if  ( (hdr_rtp::access(q_->lookup(count2))->seqno() % 20) 

== 0   
     && iph->prio_ == (hdr_ip::access(q_-

>lookup(count2))->prio() )          )  { 
     count1 = count2; 
    } 
   }   
  }else if ( (q_->length()-1) >= InTh2 && (q_->length()-1) <= InTh3 )   { 
 
   for (count2 = (q_->length()-1); count2 >= 1; count2--) { 
    if  ( (hdr_rtp::access(q_->lookup(vic))->seqno() % 10) == 0   
     && iph->prio_ == (hdr_ip::access(q_-

>lookup(count2))->prio() )           )  { 
     count1 = count2; 
    } 
   } 
  } else if ((q_->length()-1) > InTh3 ) { 
          for (count2 = (q_->length()-1); count2 >= 1; count2--) { 
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    if  ( (hdr_rtp::access(q_->lookup(count2))->seqno() % 5) 
== 0   

     && iph->prio_ == (hdr_ip::access(q_-
>lookup(count2))->prio() )   )  { 

     count1 = count2; 
    } 
   } 
  } 
 } else if (iph->prio_ == OUT) {  
  if ((q_->length()-1) >= OutTh1 && (q_->length()-1) < OutTh2 ) { 
   for (count2 = (q_->length()-1); count2 >= 1; count2--) { 
    if  ( (hdr_rtp::access(q_->lookup(count2))->seqno() % 16) 

== 0  
     && iph->prio_ == (hdr_ip::access(q_-

>lookup(count2))->prio() )   )  { 
     count1 = count2; 
    } 
   }   
  }else if ((q_->length()-1) >= OutTh2 && (q_->length()-1) <= OutTh3 )   {   
 
   for (count2 = (q_->length()-1); count2 >= 1; count2--) { 
    if  ( (hdr_rtp::access(q_->lookup(count2))->seqno() % 8) 

== 0   
     && iph->prio_ == (hdr_ip::access(q_-

>lookup(count2))->prio() )   )  { 
     count1 = count2; 
    } 
   } 
  } else if ((q_->length()-1) > OutTh3) { 
          for (count2 = (q_->length()-1); count2 >= 1; count2--) { 
    if  ( (hdr_rtp::access(q_->lookup(count2))->seqno() % 4) 

== 0  
     && iph->prio_ == (hdr_ip::access(q_-

>lookup(count2))->prio() )   )  { 
     count1 = count2; 
    } 
   } 
  }  
 } 
 
} //end if for loop count1=1 
        
  
if (count1 != 1) {   //if there is a droppable packet... 
 pkt = q_->lookup(count1); 
 q_->remove(pkt); 
 // if is IN packet, decrease the INnum_ 
              
 hdr_ip* iph=hdr_ip::access(pkt); 
 if (iph->prio_ == IN) INnum_--; 
  bcount_ -= ((hdr_cmn*)pkt->access(off_cmn_))->size(); 
  drop(pkt); 
} else {   
 if ( (q_->length()-1) > InTh3 && iph->prio_ == IN ) {        //droptype == 

DTYPE_FORCED) { 
  //pkt = q_->lookup(q_->length() -1); 
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  //pkt = q_->lookup(count1); 
  q_->remove(pkt); 
  param == 1; 
 } 
        else if ( (q_->length()-1) > OutTh3 && iph->prio_ == OUT ) {  
         // if is IN packet, decrease the INnum_ 
         q_->remove(pkt); 
  param == 1; 
 } 
 if (param == 1 ) {  //if it is forced drop drop pkt & fix counter 
         hdr_ip* iph=hdr_ip::access(pkt); 
         if (iph->prio_ == IN) INnum_--; 
         bcount_ -= ((hdr_cmn*)pkt->access(off_cmn_))->size(); 
     
         drop(pkt); 
 } 
} 
 
    return; 
} 
 
int RIOQueue::command(int argc, const char*const* argv) 
{ 
    Tcl& tcl = Tcl::instance(); 
    if (argc == 2) { 
        if (strcmp(argv[1], "reset") == 0) { 
            reset(); 
            return (TCL_OK); 
        } 
        if (strcmp(argv[1], "early-drop-target") == 0) { 
            if (de_drop_ != NULL) 
                tcl.resultf("%s", de_drop_->name()); 
            return (TCL_OK); 
        } 
    } else if (argc == 3) { 
        // attach a file for variable tracing 
        if (strcmp(argv[1], "attach") == 0) { 
            int mode; 
            const char* id = argv[2]; 
            tchan_ = Tcl_GetChannel(tcl.interp(), (char*)id, &mode); 
            if (tchan_ == 0) { 
                tcl.resultf("RIO: trace: can't attach %s for writing", id); 
                return (TCL_ERROR); 
            } 
            return (TCL_OK); 
        } 
        // tell RIO about link stats 
        if (strcmp(argv[1], "link") == 0) { 
            LinkDelay* del = (LinkDelay*)TclObject::lookup(argv[2]); 
            if (del == 0) { 
                tcl.resultf("RIO: no LinkDelay object %s", 
                    argv[2]); 
                return(TCL_ERROR); 
            } 
            // set ptc now 
            link_ = del; 
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            INedp_.ptc = link_->bandwidth() / 
                (8. * INedp_.mean_pktsize); 
            OUTedp_.ptc = link_->bandwidth() / 
                (8. * OUTedp_.mean_pktsize); 
            return (TCL_OK); 
        } 
        if (strcmp(argv[1], "early-drop-target") == 0) { 
            NsObject* p = (NsObject*)TclObject::lookup(argv[2]); 
            if (p == 0) { 
                tcl.resultf("no object %s", argv[2]); 
                return (TCL_ERROR); 
            } 
            de_drop_ = p; 
            return (TCL_OK); 
        } 
        if (!strcmp(argv[1], "packetqueue-attach")) { 
            delete q_; 
            if (!(q_ = (PacketQueue*) TclObject::lookup(argv[2]))) 
                return (TCL_ERROR); 
            else { 
                pq_ = q_; 
                return (TCL_OK); 
            } 
        } 
    } 
    return (Queue::command(argc, argv)); 
} 
 
/* 
 * Routine called by TracedVar facility when variables change values. 
 * Currently used to trace values of avg queue size, drop probability, 
 * and the instantaneous queue size seen by arriving packets. 
 * Note that the tracing of each var must be enabled in tcl to work. 
 */ 
 
void 
RIOQueue::trace(TracedVar* v) 
{ 
    char wrk[500], *p; 
 
    if (((p = strstr(v->name(), "in_ave")) == NULL) && 
     ((p = strstr(v->name(), "out_ave")) == NULL) && 
        ((p = strstr(v->name(), "in_prob")) == NULL) && 
        ((p = strstr(v->name(), "out_prob")) == NULL) && 
        ((p = strstr(v->name(), "curq")) == NULL) &&  
        ((p = strstr(v->name(), "tag")) == NULL)) { 
        fprintf(stderr, "RIO:unknown trace var %s\n", 
            v->name()); 
        return; 
    } 
 
    if (tchan_) { 
        int n; 
        double t = Scheduler::instance().clock(); 
        // XXX: be compatible with nsv1 RIO trace entries 
// added for debug hannan 
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 if (t ==125) { 
  printf("Here time =125\n"); 
 } 
        if ((p = strstr(v->name(), "curq_")) != NULL) { 
            sprintf(wrk, "CURQ %g %d",  t, int(*((TracedInt*) v))); 
 } else if ((p = strstr(v->name(), "in_ave_")) != NULL) { 
            sprintf(wrk, "INAVE %g %g", t, double(*((TracedDouble*) v))); 
        } else if ((p = strstr(v->name(), "out_ave_")) != NULL) { 
            sprintf(wrk, "OUTAVE %g %g", t, double(*((TracedDouble*) v))); 
        } else if ((p = strstr(v->name(), "in_prob1_")) != NULL) { 
            sprintf(wrk, "INPROB %g %g", t, double(*((TracedDouble*) v))); 
        } else if ((p = strstr(v->name(), "out_prob1_")) != NULL) { 
            sprintf(wrk, "OUTPROB %g %g", t, double(*((TracedDouble*) v))); 
        } else if ((p = strstr(v->name(), "tag")) != NULL) { 
            sprintf(wrk, "DHCP %g %d", t, int(*((TracedInt*) v))); 
        } 
        n = strlen(wrk); 
        wrk[n] = '\n'; 
        wrk[n+1] = 0; 
        (void)Tcl_Write(tchan_, wrk, n+1); 
    } 
    return; 
} 
 
/* for debugging help */ 
void RIOQueue::print_edp(edp* edp_) 
{ 
    printf("mean_pktsz: %d\n", edp_->mean_pktsize); 
    printf("bytes: %d, wait: %d, setbit: %d\n", 
           edp_->bytes, edp_->wait, edp_->setbit); 
    printf("minth: %f, maxth: %f\n", edp_->th_min, edp_->th_max); 
    printf("max_p_inv: %f, qw: %f, ptc: %f\n", 
           edp_->max_p_inv, edp_->q_w, edp_->ptc); 
    printf("qlim: %d, idletime: %f\n", qlim_, idletime_); 
    printf("=========\n"); 
} 
 
void RIOQueue::print_edv(edv* edv_) 
{ 
    printf("v_a: %f, v_b: %f\n", edv_->v_a, edv_->v_b); 
} 
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